一道高中数学题,帮个忙啊
1.若函数y=lg(ax^2+ax+1)的定义域为R,求实数a的范围2.若函数y=lg(ax^2+ax+1)的值域为R,求实数a的范围这两题有什么不同啊...
1.若函数y=lg(ax^2+ax+1)的定义域为R,求实数a的范围
2.若函数y=lg(ax^2+ax+1)的值域为R,求实数a的范围
这两题有什么不同啊 展开
2.若函数y=lg(ax^2+ax+1)的值域为R,求实数a的范围
这两题有什么不同啊 展开
5个回答
展开全部
第一题,外函数是对数函数,其定义域为R,就是说:
ax^2+ax+1>0对x属于实数集R恒成立,也就是说ax^2+ax+1与x轴无交点,
首先判断ax^2+ax+1的曲线类型:
1.a=0时,ax^2+ax+1=1。y=lg(ax^2+ax+1)=0,为常数函数,定义域为R是成立的。
2.a不等于0时,ax^2+ax+1为二次曲线,即抛物线。它与x轴无交点说明抛物线与x轴不相交,并且开口方向向上,曲线全部位于x轴上方。首先一点,a>0.这保证了开口方向。
再来看,与x轴无交点,就是方程ax^2+ax+1=0无解,其判别式小于0,:a^2-4a<0.
可以解得:0<a<4。
因而,0=<a<4,即为所求。
第二题,这个函数的值域是R,也就是说y能够取遍所有实数。对数函数y=lgx在定义域(0,正无穷大)上的值域就是R。其中:x趋近于0的时候,lgx趋近于负无穷大,x趋近于正无穷大的时候,lgx趋近于正无穷大。
那么题中给的函数值域为R,说明:ax^2+ax+1能够取遍所有正数,对于任意正数e,必存在x,使得ax^2+ax+1=e。也就是说不存在正数z>0,使得ax^2+ax+1=z无解。
(否则函数值域中必然没有lgz这一个数,因为函数lgz是单调递增的。)
注意:3楼所说的,ax^2+ax+1值域是(0,+无穷)的说法也不准确,函数的值域是其取值范围,函数不可能取值域以外的值。我们只能说,ax^2+ax+1能取(0,+无穷)内所有的数,但不能说其至于就是(0,+无穷)。
还是先判断曲线ax^2+ax+1类型,a=0时,为一直线,此时函数为y=0,值域不为R,不成立。
故a不等于0,曲线为抛物线。一条抛物线的纵坐标能取遍所有正数。。。。这说明这条抛物线跟x轴相交或者相切,并且一点抛物线开口向上,(否则取不到正无穷大)。因而a>0.
也就是说方程ax^2+ax+1=0必有解,有一个解或者两个解。(一个解时,判别式=0,抛物线与x轴相切。两个解时,判别式>0,抛物线与x轴想交)。
综上述:方程判别式>=0,即:a^2-4a>=0.。解得:a<=0或者a>=4.
联系a>0,故a>=4。即为所求。
ax^2+ax+1>0对x属于实数集R恒成立,也就是说ax^2+ax+1与x轴无交点,
首先判断ax^2+ax+1的曲线类型:
1.a=0时,ax^2+ax+1=1。y=lg(ax^2+ax+1)=0,为常数函数,定义域为R是成立的。
2.a不等于0时,ax^2+ax+1为二次曲线,即抛物线。它与x轴无交点说明抛物线与x轴不相交,并且开口方向向上,曲线全部位于x轴上方。首先一点,a>0.这保证了开口方向。
再来看,与x轴无交点,就是方程ax^2+ax+1=0无解,其判别式小于0,:a^2-4a<0.
可以解得:0<a<4。
因而,0=<a<4,即为所求。
第二题,这个函数的值域是R,也就是说y能够取遍所有实数。对数函数y=lgx在定义域(0,正无穷大)上的值域就是R。其中:x趋近于0的时候,lgx趋近于负无穷大,x趋近于正无穷大的时候,lgx趋近于正无穷大。
那么题中给的函数值域为R,说明:ax^2+ax+1能够取遍所有正数,对于任意正数e,必存在x,使得ax^2+ax+1=e。也就是说不存在正数z>0,使得ax^2+ax+1=z无解。
(否则函数值域中必然没有lgz这一个数,因为函数lgz是单调递增的。)
注意:3楼所说的,ax^2+ax+1值域是(0,+无穷)的说法也不准确,函数的值域是其取值范围,函数不可能取值域以外的值。我们只能说,ax^2+ax+1能取(0,+无穷)内所有的数,但不能说其至于就是(0,+无穷)。
还是先判断曲线ax^2+ax+1类型,a=0时,为一直线,此时函数为y=0,值域不为R,不成立。
故a不等于0,曲线为抛物线。一条抛物线的纵坐标能取遍所有正数。。。。这说明这条抛物线跟x轴相交或者相切,并且一点抛物线开口向上,(否则取不到正无穷大)。因而a>0.
也就是说方程ax^2+ax+1=0必有解,有一个解或者两个解。(一个解时,判别式=0,抛物线与x轴相切。两个解时,判别式>0,抛物线与x轴想交)。
综上述:方程判别式>=0,即:a^2-4a>=0.。解得:a<=0或者a>=4.
联系a>0,故a>=4。即为所求。
展开全部
1. 对所有的实数x,使得ax^2+ax+1>0恒成立
条件 a>0 , delta <0
2. lgx的值域本来就是R,但前提是定义域是x>0,如果缩小定义域,那么值域也就不是R了
看题目 也就是要求ax^2+ax+1的值域是(0,+无穷)
根据二次函数的图像,很容易看出来 a>0 delta >=0(a<0,会存在一个最大值,无法取到正无穷了,而delrta<0,与坐标轴无交点,ax^2+ax+1的最小值是正的,同样存在一小段区域无法取到
仔细想想
有不明白的追问
条件 a>0 , delta <0
2. lgx的值域本来就是R,但前提是定义域是x>0,如果缩小定义域,那么值域也就不是R了
看题目 也就是要求ax^2+ax+1的值域是(0,+无穷)
根据二次函数的图像,很容易看出来 a>0 delta >=0(a<0,会存在一个最大值,无法取到正无穷了,而delrta<0,与坐标轴无交点,ax^2+ax+1的最小值是正的,同样存在一小段区域无法取到
仔细想想
有不明白的追问
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一个是通过定义域限制X的范围来求a,一个是通过值域限制Y的范围来求a,当然不同了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题1定义域为R说明要取得所有X,所以(ax^2+ax+1)大于零即可。即a大于零且的踏小于零并上a等于0
题2值域为R即(ax^2+ax+1)大于0都能取得,所以a要大于0且的踏大于等于0。
题2值域为R即(ax^2+ax+1)大于0都能取得,所以a要大于0且的踏大于等于0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1):0<a<4
(2):a≤0,或a≥4
(2):a≤0,或a≥4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询