已知函数f(x)=sin(wx+π/4)-asin(wx-π/4)是最小的正周期为的偶函数,求w和a的值 10
展开全部
f(x)=sin(wx+π/4)-asin(wx-π/4)
函数f(x)是偶函数
f(-x)=f(x)
sin(-wx+π/4)-asin(-wx-π/4)=sin(wx+π/4)-asin(wx-π/4)
==>-sin(wx-π/4)+asin(wx+π/4)=sin(wx+π/4)-asin(wx-π/4)
(a-1)[sin(wx+π/4)+sin(wx-π/4)]=0
因为sin(wx+π/4)+sin(wx-π/4)是变量
所以a-1=0, a=1
f(x)=sin(wx+π/4)-sin(wx-π/4)
=√2coswx
T=π,2π/w=π==>w=2
∴a=1,w=2
函数f(x)是偶函数
f(-x)=f(x)
sin(-wx+π/4)-asin(-wx-π/4)=sin(wx+π/4)-asin(wx-π/4)
==>-sin(wx-π/4)+asin(wx+π/4)=sin(wx+π/4)-asin(wx-π/4)
(a-1)[sin(wx+π/4)+sin(wx-π/4)]=0
因为sin(wx+π/4)+sin(wx-π/4)是变量
所以a-1=0, a=1
f(x)=sin(wx+π/4)-sin(wx-π/4)
=√2coswx
T=π,2π/w=π==>w=2
∴a=1,w=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询