已知关于x的方程sin^2x+2cosx+a=0有解,求a的取值范围
1个回答
展开全部
变形1-Cos^2x+2Cosx+a=0,令Cosx=m,则为m^2-2m-a-1=0
要有解,必须满足B^2-4AC>=0,即
(-2)^2-4*1*(-a-1)>=0
解得a>=-2
另外必须满足-1<=m<=1
即-1<=m1*m2<=1和-1<=m1<=1【也可以选为-1<=m1<=1;-1<=m2<=1】
-1<=-a-1<=1; -1<=(2+√(4a+8))/2<=1
-1<=a+1<=1; -1<=1+√(a+2)<=1
-2<=a<=0; -2<=√(a+2)<=0
显然√(a+2)>=0才有意义
因此满足条件的就是a=-2
要有解,必须满足B^2-4AC>=0,即
(-2)^2-4*1*(-a-1)>=0
解得a>=-2
另外必须满足-1<=m<=1
即-1<=m1*m2<=1和-1<=m1<=1【也可以选为-1<=m1<=1;-1<=m2<=1】
-1<=-a-1<=1; -1<=(2+√(4a+8))/2<=1
-1<=a+1<=1; -1<=1+√(a+2)<=1
-2<=a<=0; -2<=√(a+2)<=0
显然√(a+2)>=0才有意义
因此满足条件的就是a=-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询