以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系, 5
1个回答
展开全部
分析:过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,得出△ABC与△AEG的两条高,由正方形的特殊性证明△ACM≌△AGN,是判断△ABC与△AEG面积之间的关系的关键;
解:△ABC与△AEG面积相等.
理由:过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则∠AMC=∠ANG=90°
∵四边形ABDE和四边形ACFG都是正方形
∴∠BAE=∠CAG=90°,AB=AE,AC=AG
∴∠BAC+∠EAG=180°
∵∠EAG+∠GAN=180°
∴∠BAC=∠GAN
∴△ACM≌△AGN
∴CM=GN
∵S△ABC= 1/2AB•CM,S△AEG= 1/2AE•GN
∴S△ABC=S△AEG
解:△ABC与△AEG面积相等.
理由:过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则∠AMC=∠ANG=90°
∵四边形ABDE和四边形ACFG都是正方形
∴∠BAE=∠CAG=90°,AB=AE,AC=AG
∴∠BAC+∠EAG=180°
∵∠EAG+∠GAN=180°
∴∠BAC=∠GAN
∴△ACM≌△AGN
∴CM=GN
∵S△ABC= 1/2AB•CM,S△AEG= 1/2AE•GN
∴S△ABC=S△AEG
追问
你自己做的?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询