在△ABC中,若sinA*cos^2(C/2)+sinC*cos^2(A/2)=3/2sinB
1.求证:三边a,b,c成等差数列2.求∠B的取值范围3.求函数y=cos2B/(sinB+cosB)的取值范围...
1.求证:三边a,b,c成等差数列
2.求∠B的取值范围
3.求函数y=cos2B/(sinB+cosB)的取值范围 展开
2.求∠B的取值范围
3.求函数y=cos2B/(sinB+cosB)的取值范围 展开
3个回答
展开全部
第一个问题:
∵sinA[cos(C/2)]^2+sinC[cos(A/2)]^2=(3/2)sinB,
∴2sinA[cos(C/2)]^2+2sinC[cos(A/2)]^2=3sinB,
∴sinA(1+cosC)+sinC(1+sinA)=3sinB,
∴sinA+sinC+sinAcosC+cosAsinC=3sinB,
∴sinA+sinC+sin(A+C)=3sinB, ∴sinA+sinC+sin(180°-B)=3sinB,
∴sinA+sinC=2sinB。 结合正弦定理,容易得到:a+c=2b, ∴a、b、c成等差数列。
第二个问题:
∵a+c=2b, ∴a^2+c^2+2ac=4b^2,∴(a^2+c^2-b^2)/(2ac)=3b^2/(2ac)-1。
结合余弦定理,得:
cosB=3b^2/(2ac)-1=3(a+c)^2/(8ac)-1=3(a^2+c^2+2ac)/(8ac)-1
=3(a/c+c/a+2)/8-1≧3(2+2)/8-1=3/2-1=1/2。
∴0°<B≦60°。
即:∠B的取值范围是(0°,60°]。
第三个问题:
y=cos2B/(sinB+cosB)=[(cosB)^2-(sinB)^2]/(cosB+sinB)=cosB-sinB
=-(sinB-cosB)=-√2sin(B-45°)。
∵0°<B≦60°,∴-45°<B-45°≦15°,∴-1/√2<sin(B-45°)≦(√6-√2)/4,
∴-1<√2sin(B-45°)≦(√3-1)/2,∴(1-√3)/2≦-√2sin(B-45°)<1。
即y的取值范围是[1/2-√3/2,1)。
∵sinA[cos(C/2)]^2+sinC[cos(A/2)]^2=(3/2)sinB,
∴2sinA[cos(C/2)]^2+2sinC[cos(A/2)]^2=3sinB,
∴sinA(1+cosC)+sinC(1+sinA)=3sinB,
∴sinA+sinC+sinAcosC+cosAsinC=3sinB,
∴sinA+sinC+sin(A+C)=3sinB, ∴sinA+sinC+sin(180°-B)=3sinB,
∴sinA+sinC=2sinB。 结合正弦定理,容易得到:a+c=2b, ∴a、b、c成等差数列。
第二个问题:
∵a+c=2b, ∴a^2+c^2+2ac=4b^2,∴(a^2+c^2-b^2)/(2ac)=3b^2/(2ac)-1。
结合余弦定理,得:
cosB=3b^2/(2ac)-1=3(a+c)^2/(8ac)-1=3(a^2+c^2+2ac)/(8ac)-1
=3(a/c+c/a+2)/8-1≧3(2+2)/8-1=3/2-1=1/2。
∴0°<B≦60°。
即:∠B的取值范围是(0°,60°]。
第三个问题:
y=cos2B/(sinB+cosB)=[(cosB)^2-(sinB)^2]/(cosB+sinB)=cosB-sinB
=-(sinB-cosB)=-√2sin(B-45°)。
∵0°<B≦60°,∴-45°<B-45°≦15°,∴-1/√2<sin(B-45°)≦(√6-√2)/4,
∴-1<√2sin(B-45°)≦(√3-1)/2,∴(1-√3)/2≦-√2sin(B-45°)<1。
即y的取值范围是[1/2-√3/2,1)。
展开全部
sinA*cos^2(C/2)+sinC*cos^2(A/2)=sinA*cosC/2+sinC*cosA/2+sinA/2+sinC/2
=sin(A+C)/2+sinA/2+sinC/2=sinB/2+sinA/2+sinC/2=3/2sinB
a/sinA=b/sinB=c/sinC=t
上式b/(2t)+a/(2t)+c/(2t)=3b/(2t) a+c=2b 所以三边a,b,c成等差数列
a+m=b=c-m
cosB=(a^2+C^2-b^2)/(2ac)=(b^2+2m^2)/(2b^2-2m^2)
m=0 cosB=1/2 B=60 120 范围(60-120)
y= cos2B/(sinB+cosB)=cosB-sinB= (-√2/2)sin(B-45)
sin(B-45)min=sin15
sin(B-45)max=sin75
y=((1-√3)/2,(-1-√3)/2)
=sin(A+C)/2+sinA/2+sinC/2=sinB/2+sinA/2+sinC/2=3/2sinB
a/sinA=b/sinB=c/sinC=t
上式b/(2t)+a/(2t)+c/(2t)=3b/(2t) a+c=2b 所以三边a,b,c成等差数列
a+m=b=c-m
cosB=(a^2+C^2-b^2)/(2ac)=(b^2+2m^2)/(2b^2-2m^2)
m=0 cosB=1/2 B=60 120 范围(60-120)
y= cos2B/(sinB+cosB)=cosB-sinB= (-√2/2)sin(B-45)
sin(B-45)min=sin15
sin(B-45)max=sin75
y=((1-√3)/2,(-1-√3)/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在△ABC中,若sinA*cos^2(C/2)+sinC*cos^2(A/2)=3/2sinB
1.求证:三边a,b,c成等差数列
2.求∠B的取值范围
3.求函数y=cos2B/(sinB+cosB)的取值范围
(1)证明:∵在△ABC中, sinA*cos^2(C/2)+sinC*cos^2(A/2)=3/2sinB
sinA*(cosC+1)/2+sinC*(cosA+1)/2=3/2sinB
sinA*(cosC+1)+sinC*(cosA+1)=3sinB
sin(A+C)+sinA+sinC=3sinB
sinA+sinC=2sinB
∴a+c=2b
∴三边a,b,c成等差数列
(2)解析:∵三边a,b,c成等差数列,其公差为d
由余弦定理得cosB=(a^2+C^2-b^2)/(2ac)=(b^2+2d^2)/(2b^2-2d^2)
当cosB<=0时,(b^2+2d^2)<=0,显然不成立
∴0<cosB<=1
当cosB=1时,b^2+2d^2= 2b^2-2d^2==>d^2=b^2/4==>0<d<=b/2
d=b/2==>cosB=1==>B=90°
d=0==>cosB=1/2==>B=60°
∴60°<=B<=90°
(3)解析:∵函数y=cos2B/(sinB+cosB)=cosB-sinB=√2cos(B+π/4)
B=60°==>y=√2cos(7π/12)=-√2cos(5π/12)= (1-√3)/2
B=90°==>y=√2cos(3π/4)=-√2cos(π/4)=-1
∴-1<=y<=(1-√3)/2
1.求证:三边a,b,c成等差数列
2.求∠B的取值范围
3.求函数y=cos2B/(sinB+cosB)的取值范围
(1)证明:∵在△ABC中, sinA*cos^2(C/2)+sinC*cos^2(A/2)=3/2sinB
sinA*(cosC+1)/2+sinC*(cosA+1)/2=3/2sinB
sinA*(cosC+1)+sinC*(cosA+1)=3sinB
sin(A+C)+sinA+sinC=3sinB
sinA+sinC=2sinB
∴a+c=2b
∴三边a,b,c成等差数列
(2)解析:∵三边a,b,c成等差数列,其公差为d
由余弦定理得cosB=(a^2+C^2-b^2)/(2ac)=(b^2+2d^2)/(2b^2-2d^2)
当cosB<=0时,(b^2+2d^2)<=0,显然不成立
∴0<cosB<=1
当cosB=1时,b^2+2d^2= 2b^2-2d^2==>d^2=b^2/4==>0<d<=b/2
d=b/2==>cosB=1==>B=90°
d=0==>cosB=1/2==>B=60°
∴60°<=B<=90°
(3)解析:∵函数y=cos2B/(sinB+cosB)=cosB-sinB=√2cos(B+π/4)
B=60°==>y=√2cos(7π/12)=-√2cos(5π/12)= (1-√3)/2
B=90°==>y=√2cos(3π/4)=-√2cos(π/4)=-1
∴-1<=y<=(1-√3)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询