2个回答
展开全部
解:
(1)根据正弦定理,我们有:
a/sinA=b/sinB
所以a:b=sinA:sinB
由题意知道:a:b=cosA:cosB
所以sinA:sinB=cosA:cosB
即:sinAcosB=sinBcosA
所以:sinAcosB-sinBcosA=0
sin(A-B)=0
A-B=0
∠A=∠B
∴ a=b
△ABC是等腰三角形
(2)根据余弦定理,我们有:
a^2=b^2+c^2-2bccosA-------------------①
b^2=a^2+c^2-2accosB-------------------②
①-②得:a^2-b^2=b^2-a^2+2c(a*cosB-bcosA)
∵a*cosB=bcosA
∴a*cosB-bcosA=0
上式化简为:2(a^2-b^2)=0
∴a^2=b^2
即a=b
∴△ABC是等腰三角形
(1)根据正弦定理,我们有:
a/sinA=b/sinB
所以a:b=sinA:sinB
由题意知道:a:b=cosA:cosB
所以sinA:sinB=cosA:cosB
即:sinAcosB=sinBcosA
所以:sinAcosB-sinBcosA=0
sin(A-B)=0
A-B=0
∠A=∠B
∴ a=b
△ABC是等腰三角形
(2)根据余弦定理,我们有:
a^2=b^2+c^2-2bccosA-------------------①
b^2=a^2+c^2-2accosB-------------------②
①-②得:a^2-b^2=b^2-a^2+2c(a*cosB-bcosA)
∵a*cosB=bcosA
∴a*cosB-bcosA=0
上式化简为:2(a^2-b^2)=0
∴a^2=b^2
即a=b
∴△ABC是等腰三角形
追问
正确答案是等边三角形!why???
追答
答案明显是错的
比如等腰Rt△ABC,∠C=90°,∠A=∠B=45°,a=b
显然有:acosB=bcosA
但是等腰Rt△ABC不是等边三角形
2011-09-24
展开全部
1)根据正弦定理,我们有:
a/sinA=b/sinB
所以a:b=sinA:sinB
由题意知道:a:b=cosA:cosB
所以sinA:sinB=cosA:cosB
即:sinAcosB=sinBcosA
所以:sinAcosB-sinBcosA=0
sin(A-B)=0
A-B=0
∠A=∠B
∴ a=b
△ABC是等腰三角形
a/sinA=b/sinB
所以a:b=sinA:sinB
由题意知道:a:b=cosA:cosB
所以sinA:sinB=cosA:cosB
即:sinAcosB=sinBcosA
所以:sinAcosB-sinBcosA=0
sin(A-B)=0
A-B=0
∠A=∠B
∴ a=b
△ABC是等腰三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询