已知关于x的一元二次方程4x2+mx+1/2m-4=0,
展开全部
因为4x^2+mx+1/2m-4=0两个实数根为x1,x2,,
所以
4x1^2+mx1+1/2m-4=0
4x2^2+mx2+1/2m-4=0,
x1+x2=-m/4,x1x2=(1/2m-4)/4
从而
6x1²+mx1+1/2m+2x2²-8
=4x1²+mx1+1/2m-4+2x1²+2x2²-4
=2x1²+2x2²-4
=2(x1+x2)²-4x1x2-4
=2(-m/4)²-4*(1/2m-4)/4-4
=0,
即
m²/8-m/2=0
m(m-4)=0
m=0或m=4
所以
4x1^2+mx1+1/2m-4=0
4x2^2+mx2+1/2m-4=0,
x1+x2=-m/4,x1x2=(1/2m-4)/4
从而
6x1²+mx1+1/2m+2x2²-8
=4x1²+mx1+1/2m-4+2x1²+2x2²-4
=2x1²+2x2²-4
=2(x1+x2)²-4x1x2-4
=2(-m/4)²-4*(1/2m-4)/4-4
=0,
即
m²/8-m/2=0
m(m-4)=0
m=0或m=4
展开全部
— —用韦达定理 X1乘以X2=负的a分之b X1+X2等于a分之c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为4x^2+mx+1/2m-4=0两个实数根为x1,x2,,
△=M²-4[4*(1/2 M-4)]≥ 0
M²-8M+64≥0
(M-4)²+48≥0 恒成立
4x1^2+mx1+1/2m-4=0
x1+x2=-m/4,x1x2=(1/2m-4)/4
6x1²+mx1+1/2m+2x2²-8
=(4x1²+mx1+1/2m-4)+2x1²+2x2²-4
=2x1²+2x2²-4
=2(x1+x2)²-4x1x2-4
=2(-m/4)²-4*(1/2m-4)/4-4
=0
m²/8-m/2=0
m(m-4)=0
m=0或m=4
△=M²-4[4*(1/2 M-4)]≥ 0
M²-8M+64≥0
(M-4)²+48≥0 恒成立
4x1^2+mx1+1/2m-4=0
x1+x2=-m/4,x1x2=(1/2m-4)/4
6x1²+mx1+1/2m+2x2²-8
=(4x1²+mx1+1/2m-4)+2x1²+2x2²-4
=2x1²+2x2²-4
=2(x1+x2)²-4x1x2-4
=2(-m/4)²-4*(1/2m-4)/4-4
=0
m²/8-m/2=0
m(m-4)=0
m=0或m=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询