定积分求体积,面积

y=√(x+4)和x,y轴围成的阴影的面积。1:绕着直线y=2旋转,求旋转所得体积(用两种方法)2:绕着y轴旋转,求旋转所得体积。(用两种方法)y=√(x+4)与x=-4... y=√(x+4)和x,y轴围成的阴影的面积。
1:绕着直线y=2旋转,求旋转所得体积(用两种方法)
2:绕着y轴旋转,求旋转所得体积。(用两种方法)

y=√(x+4)与x=-4和y=2围成的阴影的面积
3:求用一直线y=a,使得这个阴影面积二等分。

我算了好多次,每次答案都不同。求高手解答。
最好给出步骤算出答案下。我答案算了很多次,每次都有点出入。明天又有其他科目考试,没时间再验算了。
展开
 我来答
gcweso
2011-09-14 · TA获得超过264个赞
知道答主
回答量:115
采纳率:0%
帮助的人:32.2万
展开全部
第一题 第二题的两种方法 是:
1:直接求所求部分体积
2:利用体积差求 所求部分体积

第三题:
求出阴影面积A,求出y=√(x+4)与x=-4和y=a围成的阴影的面积A1,
满足条件A=2A1就可以了。

关于体积积分、面积积分的问题:
体积积分:
绕x轴 或 绕x轴平行的线 旋转,都是对x积分;绕y轴积分 和 绕x轴积分 不一样,要对y积分,所以 x和y 要变换一下,如本题:x=y^2-4,对绕y轴积分就是对 pi*(y^2-4)^2 * dy 积分,y的范围从0到2.
面积积分:
上面的曲线y值y1 下面曲线的y值y2,对(y1-y2)*dx 积分。
追问
我第一题用2π∫从-4到0 x*(根号x+4) 这个定积分好像算不出来。
追答
用矩形ABOD绕y=2的体积,减去阴影部分的体积,阴影部分的体积是pi * (2-y)^2 * dx
看涆余
2011-09-15 · TA获得超过6.7万个赞
知道大有可为答主
回答量:7626
采纳率:85%
帮助的人:4308万
展开全部
解 :y=√(x+4)是半个抛物线,在X轴上方,顶点为(-4,0),与Y轴交点为(0,2),封闭图形区间为[-4,0],
S=∫[-4,0] √(x+4)dx=(2/3)(x+4)^(3/2)[-4,0]
=16/3.
1、方法1:令y’=y-2,则X轴向上移动2个单位,阴影区域围绕新X轴旋转,形成外面是圆柱面,内是空心的旋转抛物面,
空心体积V1=π∫[-4,0][√(x+4)-2]^2dx
=π∫[x+8-4√(x+4)][-4,0]
=π[x^2/2+8x][-4,0]-4π(2/3)(x+4)^(3/2)[-4,0]
=24π-(8π/3)*8
=8π/3.
圆柱体积V2=π*2^2*4=16π,
则所要求旋转体体积V=16π-8π/3=40π/3。
方法2:空心部分:V1=π∫[-4,0][2-√(x+4)]^2dx
=8π/3.
圆柱体积V2=π*2^2*4=16π,
旋转体体积V=16π-8π/3=40π/3。
y=√(x+4)与x=-4和y=2围成的阴影的面积
矩形面积S1=4*2=8,
矩形面积去掉原阴影面积即为所求面积,
8-16/3=8/3。
2、x=y^2-4,(0<=y<=2)
绕Y轴旋转体积V=π∫[0,2](y^2-4)^2dy
=π∫(y^4-8y^2+16)[0,2]
=π(y^5/5-8y^3/3+16y)[0,2]
=256π/15.
3、y=a把阴影面积均分,与原曲线交点坐标为(a^2-4,a),
S=∫[a^2-4,0] √(x+4)dx-a*(a^2-4)=8/3,
5a^3-12a-8=0,
近似计算,可用卡丹公式解三次方程,
a≈-3.064.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zj1975zj
2011-09-14 · TA获得超过7090个赞
知道小有建树答主
回答量:1730
采纳率:100%
帮助的人:1669万
展开全部
11111
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式