在三角形ABC中,已知(b+c)=(c+a)=(a+b)=4比5比6.求三角形ABC的最大内角
展开全部
相当于解三元一次方程不妨设b+c=4k,c+a=5k,a+b=6k,解出a=7/2k,b=5/2k,c=3/2k.则a:b:c=7:5:3,可知∠A是最大角,再根据余弦定理求出∠A。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
b+c=8
c+a=10
a+b=12
a+b+c=15
则a=7,b=5,c=3
三角形ABC的最大内角为A
cosA=(b^2+c^2-a^2)/2bc
=(25+9-49)/30
=-1/2
A=120°
c+a=10
a+b=12
a+b+c=15
则a=7,b=5,c=3
三角形ABC的最大内角为A
cosA=(b^2+c^2-a^2)/2bc
=(25+9-49)/30
=-1/2
A=120°
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设b+c=4m,则c+a=5m,a+b=6m
解得:a=3.5m,b=2.5m,c=1.5m
所以a>b>c
根据一个三角形中,大边对大角,最大角为∠A
根据余弦定理
cosA=(b²+c²-a²)/2bc=-1/2
因为0<∠A<180°
所以最大角∠A=120°
解得:a=3.5m,b=2.5m,c=1.5m
所以a>b>c
根据一个三角形中,大边对大角,最大角为∠A
根据余弦定理
cosA=(b²+c²-a²)/2bc=-1/2
因为0<∠A<180°
所以最大角∠A=120°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用正弦定理先化简,找出三边的关系,再用余弦定理求角
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询