求初中到高中所有数学公式

麻烦大家了,我想考学,现在找公式有点难。谢谢大家了... 麻烦大家了,我想考学,现在找公式有点难。谢谢大家了 展开
昂立教育
2020-05-11 · 源于交大,专注中高考
昂立教育
向TA提问
展开全部
特别说明由于各方面情况的不断调整与变化,新课程教育在线提供的考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
chppppp70
2011-09-14
知道答主
回答量:47
采纳率:0%
帮助的人:30.4万
展开全部
初中数学定理公式大全

1、过两点有且只有一条直线
  2、两点之间线段最短
  3、同角或等角的补角相等
  4、同角或等角的余角相等
  5、过一点有且只有一条直线和已知直线垂直
  6、直线外一点与直线上各点连接的所有线段中,垂线段最短
  7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
  8、如果两条直线都和第三条直线平行,这两条直线也互相平行
  9、同位角相等,两直线平行
  10、内错角相等,两直线平行
  11、同旁内角互补,两直线平行
  12、两直线平行,同位角相等
  13、两直线平行,内错角相等
  14、两直线平行,同旁内角互补
  15、定理三角形两边的和大于第三边
  16、推论三角形两边的差小于第三边
  17、三角形内角和定理三角形三个内角的和等于180°
  18、推论1直角三角形的两个锐角互余
  19、推论2三角形的一个外角等于和它不相邻的两个内角的和
  20、推论3三角形的一个外角大于任何一个和它不相邻的内角
  21、全等三角形的对应边、对应角相等
  22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
  23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
  24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
  25、边边边公理(SSS)有三边对应相等的两个三角形全等
  26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
  27、定理1在角的平分线上的点到这个角的两边的距离相等
  28、定理2到一个角的两边的距离相同的点,在这个角的平分线上
  29、角的平分线是到角的两边距离相等的所有点的集合
  30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
  31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边
  32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
  33、推论3等边三角形的各角都相等,并且每一个角都等于60°
  34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
  35、推论1三个角都相等的三角形是等边三角形
  36、推论2有一个角等于60°的等腰三角形是等边三角形
  37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
  38、直角三角形斜边上的中线等于斜边上的一半
  39、定理线段垂直平分线上的点和这条线段两个端点的距离相等
  40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
  41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
  42、定理1关于某条直线对称的两个图形是全等形
  43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
  44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
  45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
  47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
  48、定理四边形的内角和等于360°
  49、四边形的外角和等于360°
  50、多边形内角和定理n边形的内角的和等于(n-2)×180°
  51、推论任意多边的外角和等于360°
  52、平行四边形性质定理1平行四边形的对角相等
  53、平行四边形性质定理2平行四边形的对边相等
  54、推论夹在两条平行线间的平行线段相等
  55、平行四边形性质定理3平行四边形的对角线互相平分
  56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形
  57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形
  58、平行四边形判定定理3对角线互相平分的四边形是平行四边形
  59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形
  60、矩形性质定理1矩形的四个角都是直角
  61、矩形性质定理2矩形的对角线相等
  62、矩形判定定理1有三个角是直角的四边形是矩形
  63、矩形判定定理2对角线相等的平行四边形是矩形
  64、菱形性质定理1菱形的四条边都相等
  65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
  66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
  67、菱形判定定理1四边都相等的四边形是菱形
  68、菱形判定定理2对角线互相垂直的平行四边形是菱形
  69、正方形性质定理1正方形的四个角都是直角,四条边都相等
  70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
  71、定理1关于中心对称的两个图形是全等的
  72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
  73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
  74、等腰梯形性质定理等腰梯形在同一底上的两个角相等
  75、等腰梯形的两条对角线相等
  76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
  77、对角线相等的梯形是等腰梯形
  78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
  79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
  80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边
  81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
  82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
  83、(1)比例的基本性质:
  如果a:b=c:d,那么ad=bc
  如果ad=bc,那么a:b=c:d
  84、(2)合比性质:
  如果a/b=c/d,那么(a±b)/b=(c±d)/d
  85、(3)等比性质:
  如果a/b=c/d=…=m/n(b+d+…+n≠0),
  那么(a+c+…+m)/(b+d+…+n)=a/b
  86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
  87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
  88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
  89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
  90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
  91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)
  92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
  93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
  94、判定定理3三边对应成比例,两三角形相似(SSS)
  95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
  97、性质定理2相似三角形周长的比等于相似比
  98、性质定理3相似三角形面积的比等于相似比的平方
  99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
  100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
  101、圆是定点的距离等于定长的点的集合
  102、圆的内部可以看作是圆心的距离小于半径的点的集合
  103、圆的外部可以看作是圆心的距离大于半径的点的集合
  104、同圆或等圆的半径相等
  105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
  106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
  107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
  108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
  109、定理不在同一直线上的三点确定一个圆。
  110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
  111、推论1
  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
  112、推论2圆的两条平行弦所夹的弧相等
  113、圆是以圆心为对称中心的中心对称图形
  114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
  115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
  116、定理一条弧所对的圆周角等于它所对的圆心角的一半
  117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
  118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
  119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
  120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
  121、①直线L和⊙O相交d
  ②直线L和⊙O相切d=r
  ③直线L和⊙O相离d>r
  122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
  123、切线的性质定理圆的切线垂直于经过切点的半径
  124、推论1经过圆心且垂直于切线的直线必经过切点
  125、推论2经过切点且垂直于切线的直线必经过圆心
  126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
  127、圆的外切四边形的两组对边的和相等
  128、弦切角定理弦切角等于它所夹的弧对的圆周角
  129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
  130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
  131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
  132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
  133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
  134、如果两个圆相切,那么切点一定在连心线上
  135、①两圆外离d>R+r
  ②两圆外切d=R+r
  ③两圆相交R-rr)
  ④两圆内切d=R-r(R>r)
  ⑤两圆内含dr)
  136、定理相交两圆的连心线垂直平分两圆的公共弦
  137、定理把圆分成n(n≥3):
  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形
  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
  138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
  139、正n边形的每个内角都等于(n-2)×180°/n
  140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
  141、正n边形的面积Sn=pnrn/2p表示正n边形的周长
  142、正三角形面积√3a/4a表示边长
  143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
  144、弧长计算公式:L=n兀R/180
  145、扇形面积公式:S扇形=n兀R^2/360=LR/2
  146、内公切线长=d-(R-r)外公切线长=d-(R+r)
  正弦定理a/sinA=b/sinB=c/sinC=2R
  注:其中R表示三角形的外接圆半径
  余弦定理b2=a2+c2-2accosB
注:角B是边a和边c的夹角

公式分类公式表达式
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理
判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac>0注:方程有两个不等的实根
b2-4ac<0注:方程没有实根,有共轭复数根

三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c‘*h
正棱锥侧面积S=1/2c*h‘正棱台侧面积S=1/2(c+c‘)h‘
圆台侧面积S=1/2(c+c‘)l=pi(R+r)l球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=S‘L注:其中,S‘是直截面面积,L是侧棱长
柱体体积公式V=s*h圆柱体V=pi*r2h
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wovie89
2011-09-19 · TA获得超过2496个赞
知道小有建树答主
回答量:800
采纳率:77%
帮助的人:382万
展开全部
把邮箱给我 我给你发过去电子书
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
jiajia_0422
2011-09-17
知道答主
回答量:20
采纳率:0%
帮助的人:3.3万
展开全部
如果网上搜呢 还行 如果帮你整理呢 会累死的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友bde8fea
推荐于2017-11-24 · TA获得超过170个赞
知道小有建树答主
回答量:346
采纳率:0%
帮助的人:182万
展开全部
1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒

小学数学几何形体周长 面积 体积计算公式

1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

10、圆的面积=圆周率×半径×半径
对数的性质及推导
用^表示乘方,用log(a)(b)表示以a为底,b的对数
*表示乘号,/表示除号

定义式:
若a^n=b(a>0且a≠1)
则n=log(a)(b)

基本性质:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)

推导
1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.
MN=M*N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)

3.与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N) = log(a)(M) - log(a)(N)

4.与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式
log(a)(N)=log(b)(N) / log(b)(a)

推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]

综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)

性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n) / ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导 完 )

公式三:
log(a)(b)=1/log(b)(a)

证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1
=1/log(b)(a)
还可变形得:
log(a)(b)*log(b)(a)=1
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式