已知f(x)=(1/3)^x,其反函数为y=g(x) 2.当x∈【-1,1】时,求函数y=【f(x)]^2-2af(x)+3的最小值h(a) 3.是

已知f(x)=(1/3)^x,其反函数为y=g(x)2.当x∈【-1,1】时,求函数y=【f(x)]^2-2af(x)+3的最小值h(a)3.是否存在实数m>n>3,使得... 已知f(x)=(1/3)^x,其反函数为y=g(x)
2.当x∈【-1,1】时,求函数y=【f(x)]^2-2af(x)+3的最小值h(a)
3.是否存在实数m>n>3,使得函数y=h(x)的定义域为【n,m】,值域为[n^2,m^2],若存在,求出m,n的值,若不存在,则说明理由
展开
fnxnmn
2011-09-15 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6797万
展开全部
配方 y=[f(x)-a]^2-a^2+3
x∈[-1,1]时 1/3≤f(x)≤3 下面分类讨论
a≥3时,在f(x)=3处取最小 h(a)=12-6a
a≤1/3时 在f(x)=1/3处取最小 h(a)=28/9-2a/3
1/3<a<3时 在f(x)=a处取最小 h(a)=3-a^2

m>n>3,使得函数y=h(x)的定义域为【n,m】,
则y=h(x)=12-6x,
此时函数单调递减。
所以h(n)=m^2,h(m)=n^2,
即12-6n=m^2,
12-6m=n^2,
两式相减得:6(m-n)= m^2-n^2,
因为m>n,所以6=m+n,
∵m>n>3,
∴m+n=6不可能成立。
所以不存在实数m>n>3,满足题意。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式