求矩阵初等变换化为行最简行形的技巧T.T
3个回答
展开全部
用初等行变换化行最简形的技巧
1. 一般是从左到右,一列一列处理
2. 尽量避免分数的运算
具体操作:
1. 看本列中非零行的首非零元
若有数a是其余数的公因子, 则用这个数把第本列其余的数消成零.
2. 否则, 化出一个公因子
给你个例子看看吧.
例:
2 -1 -1 1 2
1 1 -2 1 4
4 -6 2 -2 4
3 6 -9 7 9
--a21=1 是第1列中数的公因子, 用它将其余数化为0 (*)
r1-2r2, r3-4r2, r4-3r2 得
0 -3 3 -1 -6
1 1 -2 1 4
0 -10 10 -6 -12
0 3 -3 4 -3
--第1列处理完毕
--第2列中非零行的首非零元是:a12=-3,a32=10,a42=3
-- 没有公因子, 用r3+3r4w化出一个公因子
-- 但若你不怕分数运算, 哪就可以这样:
-- r1*(-1/3),r2-r1,r3+10r1,r4-3r1
-- 这样会很辛苦的 ^_^
r1+r4,r3+3r4 (**)
0 0 0 3 -9
1 1 -2 1 4
0 -1 1 6 -21
0 3 -3 4 -3
--用a32把第2列中其余数化成0
--顺便把a14(下次要处理第4列)化成1
r2+r3, r4+3r3, r1*(1/3)
0 0 0 1 -3
1 0 -1 7 -17
0 -1 1 6 -21
0 0 0 22 -66
--用a14=1将第4列其余数化为0
r2-7r1, r3-6r1, r4-22r1
0 0 0 1 -3
1 0 -1 0 4
0 -1 1 0 -3
0 0 0 0 0
--首非零元化为1
r3*(-1), 交换一下行即得
1 0 -1 0 4
0 1 -1 0 3
0 0 0 1 -3
0 0 0 0 0
注(*): 也可以用a11=2 化a31=4 为0
关键是要看这样处理有什么好处
若能在化a31为0的前提下, a32化成了1, 那就很美妙了.
注(**): r1+r4 就是利用了1,4行数据的特点,先处理了a12.
总之, 要注意观察元素的特殊性灵活处理.
1. 一般是从左到右,一列一列处理
2. 尽量避免分数的运算
具体操作:
1. 看本列中非零行的首非零元
若有数a是其余数的公因子, 则用这个数把第本列其余的数消成零.
2. 否则, 化出一个公因子
给你个例子看看吧.
例:
2 -1 -1 1 2
1 1 -2 1 4
4 -6 2 -2 4
3 6 -9 7 9
--a21=1 是第1列中数的公因子, 用它将其余数化为0 (*)
r1-2r2, r3-4r2, r4-3r2 得
0 -3 3 -1 -6
1 1 -2 1 4
0 -10 10 -6 -12
0 3 -3 4 -3
--第1列处理完毕
--第2列中非零行的首非零元是:a12=-3,a32=10,a42=3
-- 没有公因子, 用r3+3r4w化出一个公因子
-- 但若你不怕分数运算, 哪就可以这样:
-- r1*(-1/3),r2-r1,r3+10r1,r4-3r1
-- 这样会很辛苦的 ^_^
r1+r4,r3+3r4 (**)
0 0 0 3 -9
1 1 -2 1 4
0 -1 1 6 -21
0 3 -3 4 -3
--用a32把第2列中其余数化成0
--顺便把a14(下次要处理第4列)化成1
r2+r3, r4+3r3, r1*(1/3)
0 0 0 1 -3
1 0 -1 7 -17
0 -1 1 6 -21
0 0 0 22 -66
--用a14=1将第4列其余数化为0
r2-7r1, r3-6r1, r4-22r1
0 0 0 1 -3
1 0 -1 0 4
0 -1 1 0 -3
0 0 0 0 0
--首非零元化为1
r3*(-1), 交换一下行即得
1 0 -1 0 4
0 1 -1 0 3
0 0 0 1 -3
0 0 0 0 0
注(*): 也可以用a11=2 化a31=4 为0
关键是要看这样处理有什么好处
若能在化a31为0的前提下, a32化成了1, 那就很美妙了.
注(**): r1+r4 就是利用了1,4行数据的特点,先处理了a12.
总之, 要注意观察元素的特殊性灵活处理.
展开全部
用初等变换化矩阵为行最简形,主要是按照次序进行,
先化为行阶梯形,再化为行最简形,
在这样按部就班的次序中,也有灵活性,可以说是技巧吧:
比如,首先使第一行第一列的元素为1,用这个1来把1下面的元素变成零则比较简单;
同理,之后使第某行第某列的元素为1,用这个1来把1下面的元素变成零则比较简单;
还有,先把分数变成整数,避免分数运算;
还有,观察矩阵中的元素,可能是数或者是字母之间的关系,进行一些技巧性运算,等等,
总之,在依照次序进行的前提下,应该不失灵活性,而不是绝对地按照次序一味地死算。
先化为行阶梯形,再化为行最简形,
在这样按部就班的次序中,也有灵活性,可以说是技巧吧:
比如,首先使第一行第一列的元素为1,用这个1来把1下面的元素变成零则比较简单;
同理,之后使第某行第某列的元素为1,用这个1来把1下面的元素变成零则比较简单;
还有,先把分数变成整数,避免分数运算;
还有,观察矩阵中的元素,可能是数或者是字母之间的关系,进行一些技巧性运算,等等,
总之,在依照次序进行的前提下,应该不失灵活性,而不是绝对地按照次序一味地死算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询