
过点A(2,1)作椭圆x^/25+y^/9=1的动弦PQ,求PQ中点M的轨迹方程?
1个回答
展开全部
令y=k(x-2)+1=kx-2k+1,代入椭圆方程:
9x^2+25[k^2x^2+(2k-1)^2-2kx(2k-1)]=225
(9+k^2)x^2-50k(2k-1)x+25(2k-1)^2-225=0
设M(x, y),由中点定义及韦达定理得:
x=(x1+x2)/2=25k(2k-1)/(9+k^2)
将k=(y-1)/(x-2)代入得:
x[9+(y-1)^2/(x-2)^2]=25(y-1)/(x-2)[2(y-1)/(x-2)-1]
化简得轨迹方程:
x[9(x-2)^2+(y-1)^2]=25(y-1)(2y-x)
9x^2+25[k^2x^2+(2k-1)^2-2kx(2k-1)]=225
(9+k^2)x^2-50k(2k-1)x+25(2k-1)^2-225=0
设M(x, y),由中点定义及韦达定理得:
x=(x1+x2)/2=25k(2k-1)/(9+k^2)
将k=(y-1)/(x-2)代入得:
x[9+(y-1)^2/(x-2)^2]=25(y-1)/(x-2)[2(y-1)/(x-2)-1]
化简得轨迹方程:
x[9(x-2)^2+(y-1)^2]=25(y-1)(2y-x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询