高中函数周期性一道题
函数f(x)对于任意实数x满足条件f(x+2)=1/f(x)。若f(x)=-5,则f(f(5))=???????老师说的有些不明白他由f(x+2)=1/f(x)得f(x+...
函数f(x)对于任意实数x满足条件f(x+2)= 1/f(x)。若f(x)=-5,则 f(f(5))=???????
老师说的有些不明白 他由f(x+2)=1/f(x) 得f(x+4)=1/f(x+2)
所以f(x+4)=f(x)。这里我还知道。然后他出了一个f(2011)=?
他说既然f(x+4)=f(x),则f(2011)=f(4*502+3)=f(3),我就蒙了,求指点!!感激不尽 展开
老师说的有些不明白 他由f(x+2)=1/f(x) 得f(x+4)=1/f(x+2)
所以f(x+4)=f(x)。这里我还知道。然后他出了一个f(2011)=?
他说既然f(x+4)=f(x),则f(2011)=f(4*502+3)=f(3),我就蒙了,求指点!!感激不尽 展开
展开全部
周期是T
则若两个数相差周期的整数倍,他们的函数值相等
因为f(3)=f(3+4)=f(7)=f(7+4)=f(11)=……
以此类推
一直可以到=f(2011)
则若两个数相差周期的整数倍,他们的函数值相等
因为f(3)=f(3+4)=f(7)=f(7+4)=f(11)=……
以此类推
一直可以到=f(2011)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这样理解
f(3)=f(7)=f(11)=f(15)....=f(4*502+3)
每一个都加四
f(3)=f(7)=f(11)=f(15)....=f(4*502+3)
每一个都加四
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x+4)=f(x)
则f(2011)=f(4*502+3)=f(4*501+3+4)=f(4*501+3)=f(4*500+3+4)=f(4*500+3)=...=f(3)
则f(2011)=f(4*502+3)=f(4*501+3+4)=f(4*501+3)=f(4*500+3+4)=f(4*500+3)=...=f(3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x+2)=1/f(x)所以 f(x+4)=1/f(x+2)=1/1/f(x) 所以f(x+4)=f(x) 所以周期T=4 f(2011)就是502个4 还多余个3 所以f(2011)=f(3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
采纳第一个。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询