证明:N的N分之一次方的极限为1
3个回答
展开全部
记n^(1/n)=1+a(n),则n=(1+a(n))^n>n(n-1)/2*(a(n))^2,所以0<a(n)<(2/(n-1))^(1/2)对任意ε>0,取N=1+2/ε^2,当n>N时,|n^(1/n)-1|=a(n)<(2/(n-1))^(1/2)<ε,所以lim(n^(1/n))=1。
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。
展开全部
记n^(1/n)=1+a(n), 则n=(1+a(n))^n>n(n-1)/2 * (a(n))^2, 所以
0<a(n)<(2/(n-1))^(1/2)
对任意ε>0, 取N=1+ 2/ε^2, 当n>N时
|n^(1/n)-1|=a(n)<(2/(n-1))^(1/2) <ε
所以lim(n^(1/n))=1.
0<a(n)<(2/(n-1))^(1/2)
对任意ε>0, 取N=1+ 2/ε^2, 当n>N时
|n^(1/n)-1|=a(n)<(2/(n-1))^(1/2) <ε
所以lim(n^(1/n))=1.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你是大学生吗?
也就是证明(lnn)/n的极限是0了
这个好证呢罗必塔法则
lnn求导为1/n,n求导为1,于是lim(lnn)/n=lim1/n=0
也就是证明(lnn)/n的极限是0了
这个好证呢罗必塔法则
lnn求导为1/n,n求导为1,于是lim(lnn)/n=lim1/n=0
追问
如果不用罗必塔法则呢?这个题目要从微积分的定义去做的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询