运算律包括交换律、结合律、分配律
加法交换律:a+b=b+a;
乘法交换律:a×b=b×a;
加法结合律:a+b+c=(a+b)+c=a+(b+c);
乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
拓展资料
1.根据运算的定义可以推导出运算律。
运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。这个过程属于由具体到抽象、由特殊到一般的归纳,体现了合情推理的基本特点。但从知识逻辑来说,运算律与相关运算的定义是相伴相生的。数学家在定义四则运算的同时即需考虑“能否由定义出发合乎逻辑地推导出相应的运算律”。
2.运算定义和运算律是探索相关计算方法的依据。
完成运算、得出结果的方法、程序或途径,通常叫做运算方法或计算方法。把运算方法所要求的操作程序和要点用相对准确、规范且比较容易理解的文本语言表述出来,或者将当前运算归结为学生早先已经掌握的相关运算,就是所谓的“运算法则”。
卷和运算的交换律、结合律、分配律可仿照卷积运算的交换律、结合律、分配律推导过程证明成立,这里应强调的是,结合律与分配律应用于系统分析时主要用来等效化简复合系统:两个子系统并联组成的复合系统,其单位序列响应等于相并两子系统单位序列响应的代数和。
参考资料:百度百科——运算律
加法交换律:a+b=b+a;
乘法交换律:a×b=b×a;
加法结合律:a+b+c=(a+b)+c=a+(b+c);
乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
拓展资料
1.根据运算的定义可以推导出运算律。
运算律是通过对一些等式的观察、比较和分析而抽象、概括出来的运算规律。这个过程属于由具体到抽象、由特殊到一般的归纳,体现了合情推理的基本特点。但从知识逻辑来说,运算律与相关运算的定义是相伴相生的。数学家在定义四则运算的同时即需考虑“能否由定义出发合乎逻辑地推导出相应的运算律”。
2.运算定义和运算律是探索相关计算方法的依据。
完成运算、得出结果的方法、程序或途径,通常叫做运算方法或计算方法。把运算方法所要求的操作程序和要点用相对准确、规范且比较容易理解的文本语言表述出来,或者将当前运算归结为学生早先已经掌握的相关运算,就是所谓的“运算法则”。
卷和运算的交换律、结合律、分配律可仿照卷积运算的交换律、结合律、分配律推导过程证明成立,这里应强调的是,结合律与分配律应用于系统分析时主要用来等效化简复合系统:两个子系统并联组成的复合系统,其单位序列响应等于相并两子系统单位序列响应的代数和。
乘法交换律:a×b=b×a
加法结合律:a+b+c=(a+b)+c=a+(b+c)
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b+c)=a×b+a×c
左分配律:cx(a+b) = (cxa)+(cxb)
右分配律:(a+b)xc = (axc)+(bxc)
加法交换律:a+b=b+a;
乘法交换律:a×b=b×a;
加法结合律:a+b+c=(a+b)+c=a+(b+c);
乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:a×(b+c)=a×b+a×c;
左分配律:cx(a+b) = (cxa)+(cxb);
右分配律:(a+b)xc = (axc)+(bxc)。
广告 您可能关注的内容 |