13个回答
2013-04-02
展开全部
正比例的意义
☆知识要点:
(1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:
②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系. 反比例:两种相关联的量一种量变化,另种量也随着变化,如果这两种量中,相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系. 用字母表示:两种相关联的量,分别“x”和“y”表示,“k”表示不变的量,那么反比例关系式是: xy=k(一定) ②反比例关系的两种相关联的量的变化规律是一种量扩大,另一种量缩小,一种量缩而另一种量则扩大,积不变. 例:图上距离一定,实际距离和比例尺是否成反比例. 因为实际距离×比例尺=图上距离(一定) 所以,实际距离和比例尺成反比例. 3.正比例和反比例 相同点:两种量都是相关联的量,一种量变化,另一种量也随着变化. 不同点:两种量成正比例,是一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,它们扩大,缩小的规律是,这两种量相对应的两个数的比值不变,即商一定. 两种量成反比例是一种量扩大,另一种量反而缩小一种量缩小,另一种量反而扩大,它们变化的规律是这两种量中,相对应的两个数积不变(一定).
☆基础练习:
1. 填空 ①两种( )的量,一种量变化,另一种量( ).如果这两种量中( )的两上数的( )一定,这两种量就叫做成反比例的量,它们的关系叫做( ).
判断下面两种量成什么比例,并说明理由.
①时间一定,每小时织布的米数和织布总米数.
②平行四边形面积一定,它的底和高.
③分子一定,分母和分数值.
④报纸的单价一定,总价与订阅的份数.
⑤正方形的周长和边长.
⑥正方形的边长和面积.
⑦路程一定,车轮的直径与车轮的转数.
⑧被成数一定,成数与差.
⑨三角形的高一定,底和面积.
⑩甲、乙两数互为倒数,甲数和乙数 ☆数学医院:
①铺地的总面积一定,每块砖的面积与需要的块数成正比例. ②班级学生的总人数一定,出勤率与缺勤率成正比例. ③小刚跳高的高度和他的身体成正比例. ④长方形周长一定,它的长和宽成反比例. ⑤圆的半径和它的面积成正比例
反比例
反比例关系是通过应用题的总数与份数关系帮助学生认识的。在总数与份数关系中,包含总数、份数和每份数。当总数一定时,每份数和份数是两种相关联的变量。如果每份数变化,份数也随着变化。同样如果份数变化,每份数也随着变化。它们的变化,无论扩大还是缩小,相对应的两个量的乘积(也就是总数)一定。具体说,当总数一定时,每份数(或份数)扩大或缩小若干倍,份数(或每份数)反而缩小或扩大相同的倍数。简称为“一扩一缩(或一缩一扩)”。具备这种变化关系的每份数和份数成反比例关系。反比例关系在典型应用题中属于归总问题。反映在除法中,当被除数一定,除数和商成反比例关系。在分数中,当分数的分子一定,分母与分数值成反比例关系。在比例中,比的前项一定,比的后项与比值成反比例关系。如果再把总数与份数关系具体化为:在购物问题中,总价一定,单价和数量成反比例关系。在行程问题中,路程一定,速度和时间成反比例关系。在做工问题中,工作总量一定,工作效率和工作时间成反比例关系。如果两种量成反比例,那么一种量的任意两个数的比,等于另一种量的两个对应数的反比。如,加工零件的总数一定,是600个。如果每小时加工10个,60个小时完成任务。如果每小时加工20个,30个小时完成任务。每小时加工数量的比1∶2,与它相对应的完成时间比是2∶1。2∶1是1∶2的反比。
教学反比例的意义采用类比逆向推理法。即,教学开始,首先由学生根据正比例的意义,直接写出反比例的意义:
两种相关联的量——→两种相关联的量,
一种量变化——→一种量变化
另一种量也随着变化——→另一种量也随着变化。
这两种量中相对应的两个数的比值一定——→这两种量中相对应的两个数的乘积一定
再由学生根据自己写出的反比例的意义,举出实例,加以验证。
之后,进一步理解反比例的意义。
①分析反比例的意义。
成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
②反比例实质
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。这两种量叫做成反比例的量。它们的关系叫做反比例关系。
比较正、反比例:
相同点:①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。
②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。
不同点:正比例的定量是两个变量中相对应的两个数的比值。反比例的定量是两个变量中相对应的两个数的积。
正、反比例之间的相互转化:当正比例中的x值(自变量的值),转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例。提问者评价谢谢!评论(11)|117
其他10条回答2011-09-17 15:28创新之永恒|七级比例,技术制图中的一般规定术语,是指图中图形与其实物相应要素的线性尺寸之比。 ①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27 在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。 比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。 比例有四个项,分别是两个内项和两个外项。 ②比,如:教师和学生的~已经达到要求。 ③比重,如:在所销商品中,国货的~比较大。 ④比例写成分数的形式后,那么,左边的分母和右边的分子是内项 左边的分子和右边的分母是外项。 ⑤在一个比例中,两个外项的积等于两个[提问者采纳]|评论(5)|202010-04-03 10:12843274220|一级2:3=6:9[提问者采纳]|评论(2)|42010-03-27 14:32sunboyyyhui_2|五级比例,技术制图中的一般规定术语,是指图中图形与其实物相应要素的线性尺寸之比。
①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。
比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。
比例有四个项,分别是两个内项和两个外项。
②比,如:教师和学生的~已经达到要求。
③比重,如:在所销商品中,国货的~比较大。
④比例写成分数的形式后,那么,左边的分母和右边的分子是内项
左边的分子和右边的分母是外项。
⑤在一个比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。
⑥正比例与反比例的相同点与不同点
相同点 不同点 关系式
正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系。如果用字母x、y表示两种关联的量,用k表示它们的比值正比例关系可以用下面式子表示:y/x=k(一定)
反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量他们的关系叫做反比例关系。如果用字母x、y表示两种关联的量,用k表示它们的乘积反比例关系可以用下面式子表示:xy=k(一定)1.比和比例。
比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。
比例分为比例尺和比例. 表示两个比相等的式子叫做比例。判断两个比能不能组成比例,要看它们的比值是不是相等。组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。在比例里,两个外项的积等于两个内项的积。求比例的未知项,叫做解比例。 比如:x:3= 9:27
解法x:3=9:27
解:27x=3×9
27x=27
x=1
⑥这有一道数学题,试着做做看吧!
125%:7=4:x
125%x=4x7
1.25x =28
x =28/1.25
x =22.5
⑦比例具有如下性质
若a:b=c:d(b.d≠0),则有
1) ad=bc
2) b:a=d:c (a.c≠0)
3) a:c=b:d ; c:a=d:b
4) (a+b):b=(c+d):d
5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)
6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
证明过程如下
令 a:b=c:d=k,
∵a:b=c:d
∴a=bk;c=dk
1)∴ad=bk*d=kbd;bc=b*dk=kbd
∴ad=bc
2) 显然b:a=d:c=1/k
3) a:c=bk:dk=b:d ;结合性质2有c:a=d:b
4) ∵a:b=c:d
∴(a/b)+1=(c/d)+1
∴(a+b)/b=(c+d)/d=1+k ;即 (a+b):b=(c+d):d
a+b≠0,c+d≠0时,结合性质2有b:(a+b)=d:(c+d)
且b/(a+b)=d/(c+d)=1/(k+1) ……①
5) ∵b/(a+b)=d/(c+d)
∴1- b/(a+b)=1- d/(c+d)=1-1/(k+1)
∴a/(a+b)=c/(c+d)=k/k+1 ……② 即a:(a+b)=c:(c+d)
a+b≠0,c+d≠0时,结合性质2有 (a+b):a=(c+d):c
6) ②-①,等式两边同时相减得 (a-b)/(a+b)=(c-d)/(c+d) =(k-1)/(k+1)
7) 做做此题:一个长方形,比例为2:3,长方形的面积是36平方厘米,求它的长和宽。
(有意者,请做在后面。)
假设长方形宽为2,长为3,那么:
宽:2x2=4 长: 3x3=9
答:长方形的长是9,宽是4。
☆知识要点:
(1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:
②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系. 反比例:两种相关联的量一种量变化,另种量也随着变化,如果这两种量中,相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系. 用字母表示:两种相关联的量,分别“x”和“y”表示,“k”表示不变的量,那么反比例关系式是: xy=k(一定) ②反比例关系的两种相关联的量的变化规律是一种量扩大,另一种量缩小,一种量缩而另一种量则扩大,积不变. 例:图上距离一定,实际距离和比例尺是否成反比例. 因为实际距离×比例尺=图上距离(一定) 所以,实际距离和比例尺成反比例. 3.正比例和反比例 相同点:两种量都是相关联的量,一种量变化,另一种量也随着变化. 不同点:两种量成正比例,是一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,它们扩大,缩小的规律是,这两种量相对应的两个数的比值不变,即商一定. 两种量成反比例是一种量扩大,另一种量反而缩小一种量缩小,另一种量反而扩大,它们变化的规律是这两种量中,相对应的两个数积不变(一定).
☆基础练习:
1. 填空 ①两种( )的量,一种量变化,另一种量( ).如果这两种量中( )的两上数的( )一定,这两种量就叫做成反比例的量,它们的关系叫做( ).
判断下面两种量成什么比例,并说明理由.
①时间一定,每小时织布的米数和织布总米数.
②平行四边形面积一定,它的底和高.
③分子一定,分母和分数值.
④报纸的单价一定,总价与订阅的份数.
⑤正方形的周长和边长.
⑥正方形的边长和面积.
⑦路程一定,车轮的直径与车轮的转数.
⑧被成数一定,成数与差.
⑨三角形的高一定,底和面积.
⑩甲、乙两数互为倒数,甲数和乙数 ☆数学医院:
①铺地的总面积一定,每块砖的面积与需要的块数成正比例. ②班级学生的总人数一定,出勤率与缺勤率成正比例. ③小刚跳高的高度和他的身体成正比例. ④长方形周长一定,它的长和宽成反比例. ⑤圆的半径和它的面积成正比例
反比例
反比例关系是通过应用题的总数与份数关系帮助学生认识的。在总数与份数关系中,包含总数、份数和每份数。当总数一定时,每份数和份数是两种相关联的变量。如果每份数变化,份数也随着变化。同样如果份数变化,每份数也随着变化。它们的变化,无论扩大还是缩小,相对应的两个量的乘积(也就是总数)一定。具体说,当总数一定时,每份数(或份数)扩大或缩小若干倍,份数(或每份数)反而缩小或扩大相同的倍数。简称为“一扩一缩(或一缩一扩)”。具备这种变化关系的每份数和份数成反比例关系。反比例关系在典型应用题中属于归总问题。反映在除法中,当被除数一定,除数和商成反比例关系。在分数中,当分数的分子一定,分母与分数值成反比例关系。在比例中,比的前项一定,比的后项与比值成反比例关系。如果再把总数与份数关系具体化为:在购物问题中,总价一定,单价和数量成反比例关系。在行程问题中,路程一定,速度和时间成反比例关系。在做工问题中,工作总量一定,工作效率和工作时间成反比例关系。如果两种量成反比例,那么一种量的任意两个数的比,等于另一种量的两个对应数的反比。如,加工零件的总数一定,是600个。如果每小时加工10个,60个小时完成任务。如果每小时加工20个,30个小时完成任务。每小时加工数量的比1∶2,与它相对应的完成时间比是2∶1。2∶1是1∶2的反比。
教学反比例的意义采用类比逆向推理法。即,教学开始,首先由学生根据正比例的意义,直接写出反比例的意义:
两种相关联的量——→两种相关联的量,
一种量变化——→一种量变化
另一种量也随着变化——→另一种量也随着变化。
这两种量中相对应的两个数的比值一定——→这两种量中相对应的两个数的乘积一定
再由学生根据自己写出的反比例的意义,举出实例,加以验证。
之后,进一步理解反比例的意义。
①分析反比例的意义。
成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
②反比例实质
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。这两种量叫做成反比例的量。它们的关系叫做反比例关系。
比较正、反比例:
相同点:①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。
②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。
不同点:正比例的定量是两个变量中相对应的两个数的比值。反比例的定量是两个变量中相对应的两个数的积。
正、反比例之间的相互转化:当正比例中的x值(自变量的值),转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例。提问者评价谢谢!评论(11)|117
其他10条回答2011-09-17 15:28创新之永恒|七级比例,技术制图中的一般规定术语,是指图中图形与其实物相应要素的线性尺寸之比。 ①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27 在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。 比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。 比例有四个项,分别是两个内项和两个外项。 ②比,如:教师和学生的~已经达到要求。 ③比重,如:在所销商品中,国货的~比较大。 ④比例写成分数的形式后,那么,左边的分母和右边的分子是内项 左边的分子和右边的分母是外项。 ⑤在一个比例中,两个外项的积等于两个[提问者采纳]|评论(5)|202010-04-03 10:12843274220|一级2:3=6:9[提问者采纳]|评论(2)|42010-03-27 14:32sunboyyyhui_2|五级比例,技术制图中的一般规定术语,是指图中图形与其实物相应要素的线性尺寸之比。
①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。
比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。
比例有四个项,分别是两个内项和两个外项。
②比,如:教师和学生的~已经达到要求。
③比重,如:在所销商品中,国货的~比较大。
④比例写成分数的形式后,那么,左边的分母和右边的分子是内项
左边的分子和右边的分母是外项。
⑤在一个比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。
⑥正比例与反比例的相同点与不同点
相同点 不同点 关系式
正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系。如果用字母x、y表示两种关联的量,用k表示它们的比值正比例关系可以用下面式子表示:y/x=k(一定)
反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量他们的关系叫做反比例关系。如果用字母x、y表示两种关联的量,用k表示它们的乘积反比例关系可以用下面式子表示:xy=k(一定)1.比和比例。
比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。
比例分为比例尺和比例. 表示两个比相等的式子叫做比例。判断两个比能不能组成比例,要看它们的比值是不是相等。组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。在比例里,两个外项的积等于两个内项的积。求比例的未知项,叫做解比例。 比如:x:3= 9:27
解法x:3=9:27
解:27x=3×9
27x=27
x=1
⑥这有一道数学题,试着做做看吧!
125%:7=4:x
125%x=4x7
1.25x =28
x =28/1.25
x =22.5
⑦比例具有如下性质
若a:b=c:d(b.d≠0),则有
1) ad=bc
2) b:a=d:c (a.c≠0)
3) a:c=b:d ; c:a=d:b
4) (a+b):b=(c+d):d
5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)
6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
证明过程如下
令 a:b=c:d=k,
∵a:b=c:d
∴a=bk;c=dk
1)∴ad=bk*d=kbd;bc=b*dk=kbd
∴ad=bc
2) 显然b:a=d:c=1/k
3) a:c=bk:dk=b:d ;结合性质2有c:a=d:b
4) ∵a:b=c:d
∴(a/b)+1=(c/d)+1
∴(a+b)/b=(c+d)/d=1+k ;即 (a+b):b=(c+d):d
a+b≠0,c+d≠0时,结合性质2有b:(a+b)=d:(c+d)
且b/(a+b)=d/(c+d)=1/(k+1) ……①
5) ∵b/(a+b)=d/(c+d)
∴1- b/(a+b)=1- d/(c+d)=1-1/(k+1)
∴a/(a+b)=c/(c+d)=k/k+1 ……② 即a:(a+b)=c:(c+d)
a+b≠0,c+d≠0时,结合性质2有 (a+b):a=(c+d):c
6) ②-①,等式两边同时相减得 (a-b)/(a+b)=(c-d)/(c+d) =(k-1)/(k+1)
7) 做做此题:一个长方形,比例为2:3,长方形的面积是36平方厘米,求它的长和宽。
(有意者,请做在后面。)
假设长方形宽为2,长为3,那么:
宽:2x2=4 长: 3x3=9
答:长方形的长是9,宽是4。
展开全部
比例,技术制图中的一般规定术语,是指图中图形与其实物相应要素的线性尺寸之比。 ①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27 在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。 比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。 比例有四个项,分别是两个内项和两个外项。 ②比,如:教师和学生的~已经达到要求。 ③比重,如:在所销商品中,国货的~比较大。 ④比例写成分数的形式后,那么,左边的分母和右边的分子是内项 左边的分子和右边的分母是外项。 ⑤在一个比例中,两个外项的积等于两个
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
意义:用于反映总体的构成或者结构,比例是一个总体中各个部分的数量占总体数量的比重。
基本性质:
若a:b=c:d(b.d≠0),则有
1) ad=bc (即比例的基本性质:两个外项的积等于两个内项的积)
2) b:a=d:c (a.c≠0) (交换比较,结果仍然相等)
3) a:c=b:d ; c:a=d:b
4) (a+b):b=(c+d):d
5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)
6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
若a:b=c:d(b.d≠0),则有
1) ad=bc (即比例的基本性质:两个外项的积等于两个内项的积)
2) b:a=d:c (a.c≠0) (交换比较,结果仍然相等)
3) a:c=b:d ; c:a=d:b
4) (a+b):b=(c+d):d
5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)
6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
应用:
一个长方形,比为5:3,长方形的周长是80米,求它的长和宽。
假设长方形长为5X,宽为3X,那么:
(5X+3X)*2=80
8X=40
X=5
长:5X=5*5=25(米) 宽:3X=5*3=15(米)
答:这个长方形的长是25米,宽是15米。
扩展资料:
比例的美术术语:
比例通常指物体之间形的大小、宽窄、高低的关系;另外比例也会在构图中用到,例如你在画一幅素描静物就要注意所有静物占用画面的大小关系。
画素描的过程中把握比例的几个技巧:
1.横着比:当你要画某一个物体的位置时就以此做一条贯穿整个画面的横线,看到所有在这条线上的物体。
2.竖着比:做一条贯穿画面的垂线,注意观察所有在这条线上的物体。
3.多看物体、少看画面:为的是形成观察的意识,抛弃大脑中的原始概念。看物体5秒,看画面2秒,眼睛要在画面和物体之间反复的观察比较。
4.总的说就是放长线、看整体、多比较。把这些想象成经线纬线一样会比较简单,初学者要多画辅助线,等功底深厚了你会发现你画面中的辅助线会越来越少,而你心里假象的辅助线会越来越多。
在构图中要注意的比例关系技巧:
一般被画物占画面百分之八十左右,看上去饱满。
人物相关比例:
1.三庭五眼:发际线-鼻底-下巴为三庭,这三段之间每段的距离大约相等;耳根-外眼角-内眼角-内眼角-外眼角-耳根为五眼,它们之间距离大约相等。
2.站七坐五蹲三半:一个站着的成年人身高大约等于他七个头长(站七),当他座上时就等于五个头长(坐五),蹲着时刚好是三个半头长(三头)。
3.小孩的头部比例较大,站着时一般为三到四个头高。
4.张开双臂,两个中指之间的长度大约等于这个人的身高。
5.手臂的长度为两个头长。
6.手掌为三分之二头长。
7.当举起胳膊时胳膊肘刚好到头顶。
8.肩宽为两个头宽。
9.脚掌为一个头长。
10.男人肩比胯宽,而女人跨比肩宽。
参考资料来源:百度百科-比例
基本性质:
若a:b=c:d(b.d≠0),则有
1) ad=bc (即比例的基本性质:两个外项的积等于两个内项的积)
2) b:a=d:c (a.c≠0) (交换比较,结果仍然相等)
3) a:c=b:d ; c:a=d:b
4) (a+b):b=(c+d):d
5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)
6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
若a:b=c:d(b.d≠0),则有
1) ad=bc (即比例的基本性质:两个外项的积等于两个内项的积)
2) b:a=d:c (a.c≠0) (交换比较,结果仍然相等)
3) a:c=b:d ; c:a=d:b
4) (a+b):b=(c+d):d
5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)
6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
应用:
一个长方形,比为5:3,长方形的周长是80米,求它的长和宽。
假设长方形长为5X,宽为3X,那么:
(5X+3X)*2=80
8X=40
X=5
长:5X=5*5=25(米) 宽:3X=5*3=15(米)
答:这个长方形的长是25米,宽是15米。
扩展资料:
比例的美术术语:
比例通常指物体之间形的大小、宽窄、高低的关系;另外比例也会在构图中用到,例如你在画一幅素描静物就要注意所有静物占用画面的大小关系。
画素描的过程中把握比例的几个技巧:
1.横着比:当你要画某一个物体的位置时就以此做一条贯穿整个画面的横线,看到所有在这条线上的物体。
2.竖着比:做一条贯穿画面的垂线,注意观察所有在这条线上的物体。
3.多看物体、少看画面:为的是形成观察的意识,抛弃大脑中的原始概念。看物体5秒,看画面2秒,眼睛要在画面和物体之间反复的观察比较。
4.总的说就是放长线、看整体、多比较。把这些想象成经线纬线一样会比较简单,初学者要多画辅助线,等功底深厚了你会发现你画面中的辅助线会越来越少,而你心里假象的辅助线会越来越多。
在构图中要注意的比例关系技巧:
一般被画物占画面百分之八十左右,看上去饱满。
人物相关比例:
1.三庭五眼:发际线-鼻底-下巴为三庭,这三段之间每段的距离大约相等;耳根-外眼角-内眼角-内眼角-外眼角-耳根为五眼,它们之间距离大约相等。
2.站七坐五蹲三半:一个站着的成年人身高大约等于他七个头长(站七),当他座上时就等于五个头长(坐五),蹲着时刚好是三个半头长(三头)。
3.小孩的头部比例较大,站着时一般为三到四个头高。
4.张开双臂,两个中指之间的长度大约等于这个人的身高。
5.手臂的长度为两个头长。
6.手掌为三分之二头长。
7.当举起胳膊时胳膊肘刚好到头顶。
8.肩宽为两个头宽。
9.脚掌为一个头长。
10.男人肩比胯宽,而女人跨比肩宽。
参考资料来源:百度百科-比例
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:
②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:x比y=k
②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间成正比例
②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间成正比例
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询