数学初三,一元二次方程应用题求解答。

等腰Rt△ABC中,AB=BC=8cm,动点P从A出发,沿AB向点B移动。通过点P分别引平行于BC,AC的直线交于点R,Q.问:AP等于多少的时候,平行四边形PQCR的面... 等腰Rt△ABC中,AB=BC=8cm,动点P从A出发,沿AB向点B移动。通过点P分别引平行于BC,AC的直线交于点R,Q.问:AP等于多少的时候,平行四边形PQCR的面积等于16平方厘米?
图片
展开
这我顶不住鸭
2011-09-17 · TA获得超过163个赞
知道答主
回答量:68
采纳率:0%
帮助的人:31.5万
展开全部
∵:等腰Rt△ABC中 过点P分别引平行于BC,AC的直线交于点R,Q
∴: ∠ABC=90 PR∥BC RQ∥AC
∵: PR∥BC RQ∥AC
∴: AP/AB=CQ/BC °
推出 AP=CQ BP=BQ
∵:平行四边形PQCR的面积等于16平方厘米
∴:BQ乘QC=16
设 AP=X BP=8-X
∴ X乘(8-X)=16
-X方+8X-16=0
X方-8X+16=0
(X-4)方=0
X-4=0
X=4

自己做的 可能对也可能不对...
追问
是PQ//AC吧。
追答
因为你给的题目是  通过点P分别引平行于BC,AC的直线交于点R,Q  所以一般情况都是R在BC上 Q在AC上 除非题目有要求 
这图是你自己画的还是题目给的 如果是题目给的 吧Q和R换一下就好 不过是自己画的 那就...
一只小梦梦魇bd
2011-09-17
知道答主
回答量:5
采纳率:0%
帮助的人:8396
展开全部
∵RtΔABC AB=BC=8㎝
∴SΔABC=8×8÷2=36㎝²
∴SΔABC-SロPQCR=20㎝²
则:
当SΔAPR+SΔPPQB 时,
面积为20cm²

∵平行四边形RPQC ∴∠RPA=∠B=90°
∴AP=RP=CQ
∴AB-AP=BC-CQ
即:PB=BQ
∴设AP为x cm 则,
RP=x cm, PB=BQ=﹙8-x﹚cm

则:x²/2+(8-x)²/2=20

则:x1=6 x2=2
答:AP等于2cm或6cm时。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1205129468
2011-09-17
知道答主
回答量:39
采纳率:0%
帮助的人:9.2万
展开全部
因为是等腰直角三角形,AP就是平行四边形PQCR的底边,高就是8CM减去AP就得到
AP*(8-AP)=16
解方程 AP=4CM
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
宝钢集团总公司
2011-09-17
知道答主
回答量:13
采纳率:0%
帮助的人:7.9万
展开全部
平行四边形PQCR的面积等于16平方厘米——>等腰Rt△APB+等腰Rt△PBQ=32-16=16——>0.5X^2+0.5(8-X)^2=16 ——> X=4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式