试说明关于x的方程(m-2)x的平方-(2m-1)x+4=0的根的情况

笔架山泉
2011-09-17 · TA获得超过2万个赞
知道大有可为答主
回答量:3117
采纳率:100%
帮助的人:1318万
展开全部
解答:当m=2时,原方程变形为:-3x+4=0,方程有唯一解。当m≠2时,方程是一元二次方程,由根的判别式=[-﹙2m-1﹚]²-4﹙m-2﹚×4=4m²-20m+33=4[m²-5m+﹙5/2﹚²﹚]-4×﹙5/2﹚²+33=4﹙x-5/2﹚²+8>0,∴方程有两个不相等的实数根。
ZCX0874
2011-09-17 · TA获得超过3万个赞
知道大有可为答主
回答量:6764
采纳率:75%
帮助的人:2875万
展开全部
(m-2) x^2-(2m-1)x+4=0.
判别式▲=(2m-1)^2-4*(m-2)*4.
=4m^2-4m+1-16m+32.
=4m^2-20m+33.
又令:4m^2-20m+33=0.
判别式▲=20^2-4*33.
=400-132.
=268>0。
∴ 4m^2-20m+33=0 有两个不等的实数根,从而原方程有不等的 实数根。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
买昭懿007
2011-09-17 · 知道合伙人教育行家
买昭懿007
知道合伙人教育行家
采纳数:35959 获赞数:160770
毕业于山东工业大学机械制造专业 先后从事工模具制作、设备大修、设备安装、生产调度等工作

向TA提问 私信TA
展开全部
x的方程(m-2)x的平方-(2m-1)x+4=0
判别式 = [-(2m-1)]^2 - 4(m-2)*4 = 4m^2-4m+1 - 16m+32 = 4m^2-20m+33 = 4(m-5/2)-25+33
= 4(m-5/2)+8≥8>0
两个不相等的实数根
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Clemmiechen
2011-09-17 · TA获得超过352个赞
知道小有建树答主
回答量:160
采纳率:0%
帮助的人:172万
展开全部
有两个不相等的实数跟,验证b平方-4ac大于零。其中,得出一个二次因式,提取常数,整理式子,最后可知式子的最小值大于零,有问题可继续追问,请及时采纳谢谢!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式