已知f(x)=log以a为底的(a^x-1)的对数,(a>0,且a≠1) (1)求f(x)的定义域 (2)讨论f(x)的单调性 5

wendong87
2011-09-18 · TA获得超过2967个赞
知道大有可为答主
回答量:2123
采纳率:50%
帮助的人:1337万
展开全部
先将a分开讨论,一种是0<a<1,一种是1<a。现解答两题:
(1)当0<a<1,则要求(a^x-1)>0,所以得出a^x>1,从而x<0;
当1<a,则同理得出x>0。
(2)log以a为底时,当0<a<1时,单调递减。而当1<a则就递增。
追问
还是不怎么懂
追答
因为log是高一的上学期的最基础的知识。它的讨论前提是要先看底数是那个范围,在要求对数是不能小于或者等于零的。
只管抄就行了,这些是基础了,解释不了了
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式