在rt三角形abc中,角acb=90度,ac=bc,d为bc中点ad垂直ce,垂足为e,bf平行ac交ce的延长线于证ac垂直平分df 5

急用,... 急用, 展开
刘悦15
2011-09-18 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1453
采纳率:83%
帮助的人:499万
展开全部
题目好像是 证明AB垂直平分DF吧
∵BF平行于AC(已知)
∴∠ACB+∠CBF=180°(两直线平行,同旁内角互补)
∠ACE=∠BFC(两直线平行,内错角相等)
∵∠ACB=90°(已知)
∴∠CBF=180°-90°=90°
∴∠FCB+∠BFC=90°
∵∠ACE+∠CAD=90°(已知)
∴∠BFC+∠CAD=90°(等量代换)
∴∠FCB=∠CAD(同角的余角相等)
∵BC=AC(已知)
∴△ACD全等于△CFB(ASA)
∴CD=BF
∵D是BC的中点(已知)
∴CD=BD(中点定义)
∴BD=BF(等量代换)
∴△BDF为等腰三角形
∵∠CAB=∠CBA=45°(由△ABC是等腰三角形知)
∴AB垂直平分DF(等腰三角形三线合一)
百度网友3ad54a8
2011-09-28 · 超过16用户采纳过TA的回答
知道答主
回答量:85
采纳率:0%
帮助的人:46.8万
展开全部
证明:
∵BF平行于AC(已知)
∴∠ACB+∠CBF=180°(两直线平行,同旁内角互补)
∠ACE=∠BFC(两直线平行,内错角相等)
∵∠ACB=90°(已知)
∴∠CBF=180°-90°=90°
∴∠FCB+∠BFC=90°
∵∠ACE+∠CAD=90°(已知)
∴∠BFC+∠CAD=90°(等量代换)
∴∠FCB=∠CAD(同角的余角相等)
∵BC=AC(已知)
∴△ACD全等于△CFB(ASA)
∴CD=BF
∵D是BC的中点(已知)
∴CD=BD(中点定义)
∴BD=BF(等量代换)
∴△BDF为等腰三角形
∵∠CAB=∠CBA=45°(由△ABC是等腰三角形知)
∴AB垂直平分DF(等腰三角形三线合一)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式