函数f(x)=loga(x^2-ax+3),(a>0且a不等于1)满足对任意x1,x2当x1<x2<a/2,f(x1)-f(x2)>0,a的取值范围?
3个回答
展开全部
y=x^2-ax+3=(x-a/2)^2+3-a^2/4
对称轴为:x=a/2
x1, x2在对称轴左边, f(x1)>f(x2)
若a>1, 则需有y1>y2, 这显然成立。
若0<a<1,则需有:y1<y2, 这显然不成立。
因此a的取值范围是:a>1.
对称轴为:x=a/2
x1, x2在对称轴左边, f(x1)>f(x2)
若a>1, 则需有y1>y2, 这显然成立。
若0<a<1,则需有:y1<y2, 这显然不成立。
因此a的取值范围是:a>1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵y=x2-ax+3=(x-a2)2+3-a24在对称轴左边递减,
∴当x1<x2≤a2时,y1>y2
∵对任意的x1、x2,当x1<x2≤a2时,f(x1)-f(x2)>0⇒f(x1)>f(x2)
故应有 a>1 ①
又因为y=x2-ax+3在真数位置上所以须有3-a24>0⇒-23<a<23 ②
综上得 1<a<23
故答案为:(1,23).
∴当x1<x2≤a2时,y1>y2
∵对任意的x1、x2,当x1<x2≤a2时,f(x1)-f(x2)>0⇒f(x1)>f(x2)
故应有 a>1 ①
又因为y=x2-ax+3在真数位置上所以须有3-a24>0⇒-23<a<23 ②
综上得 1<a<23
故答案为:(1,23).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询