已知f(x)=lnx-ax^2-bx若f(x)的图像与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,AB的中点为C(x0,0)求证f'(x0)>0
3个回答
展开全部
(II)证明:由已知得 {f(x1)=lnx1-ax12-bx1=0f(x2)=lnx2-ax22-bx2=0,
即 {lnx1=ax12+bx1lnx2=ax22+bx2,两式相减,得: lnx1x2=a(x1+x2)(x1-x2)+b(x1-x2)⇒ lnx1x2=[a(x1+x2)+b](x1-x2),
由f′(x)= 1x-2ax-b及2x0=x1+x2,得f′(x0)= 1x0-2ax0-b= 2x1+x2-1x1-x2lnx1x2
= 1x1-x2[2(x1-x2)x1+x2-lnx1x2]= 1x1-x2[2(x1x2-1)x1x2+1-lnx1x2],
令t= x1x2∈(0,1),且φ(t)= 2t-2t+1-lnt(0<t<1),
∵φ′(t)= -(t-1)2t(t+1)2<0,
∴φ(t)是(0,1)上的减函数,
∴φ(t)>φ(1)=0,
又x1<x2,
∴f'(x0)<0.
即 {lnx1=ax12+bx1lnx2=ax22+bx2,两式相减,得: lnx1x2=a(x1+x2)(x1-x2)+b(x1-x2)⇒ lnx1x2=[a(x1+x2)+b](x1-x2),
由f′(x)= 1x-2ax-b及2x0=x1+x2,得f′(x0)= 1x0-2ax0-b= 2x1+x2-1x1-x2lnx1x2
= 1x1-x2[2(x1-x2)x1+x2-lnx1x2]= 1x1-x2[2(x1x2-1)x1x2+1-lnx1x2],
令t= x1x2∈(0,1),且φ(t)= 2t-2t+1-lnt(0<t<1),
∵φ′(t)= -(t-1)2t(t+1)2<0,
∴φ(t)是(0,1)上的减函数,
∴φ(t)>φ(1)=0,
又x1<x2,
∴f'(x0)<0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询