
如图,在四边形ABCD中,AB=AD,角BAD=60度,角BCD=12O度,试说明BC+DC=AC
4个回答
展开全部
证明:延长BC到点D,使CE=CD,连接DE,BD
∵∠BAD=60°,AB=AD
∴△ABD是等边三角形
∴BD=AD,∠ADB=60°
∵∠BCD=120°
∴∠DCE=60°
∵CD=CE
∴△CDE是等边三角形
∴CD=DE,∠CDE=60°
∴∠CDE+∠BCD=∠ADB+∠BCD
∴∠BDE=∠ADC
∵AD=BD,CD=DE
∴△ACD≌△BED
∴AC=BE=BC+CE=BC+CD
即BC+DC=AC
∵∠BAD=60°,AB=AD
∴△ABD是等边三角形
∴BD=AD,∠ADB=60°
∵∠BCD=120°
∴∠DCE=60°
∵CD=CE
∴△CDE是等边三角形
∴CD=DE,∠CDE=60°
∴∠CDE+∠BCD=∠ADB+∠BCD
∴∠BDE=∠ADC
∵AD=BD,CD=DE
∴△ACD≌△BED
∴AC=BE=BC+CE=BC+CD
即BC+DC=AC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询