如图2,三角形ABC中,有一点P在AC上移动,若AB=AC=5,BC=6,试求AP+BP+CP的最小值
13个回答
展开全部
设AP=x,则CP=5-x,
在Rt△ABP中,BP2=AB2-AP2,
在Rt△BCP中,BP2=BC2-CP2,
∴AB2-AP2=BC2-CP2,
∴52-x2=62-(5-x)2
解得x=1.4,
在Rt△ABP中,BP= = =4.8,
∴AP+BP+CP=AC+BP=5+4.8=9.8.
在Rt△ABP中,BP2=AB2-AP2,
在Rt△BCP中,BP2=BC2-CP2,
∴AB2-AP2=BC2-CP2,
∴52-x2=62-(5-x)2
解得x=1.4,
在Rt△ABP中,BP= = =4.8,
∴AP+BP+CP=AC+BP=5+4.8=9.8.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:从B向AC作垂线段BP,交AB于P,
设AP=x,则CP=5-x,
在Rt△ABP中,BP2=AB2-AP2,
在Rt△BCP中,BP2=BC2-CP2,
∴AB2-AP2=BC2-CP2,
∴52-x2=62-(5-x)2
解得x=1.4,
在Rt△ABP中,BP= = =4.8,
∴AP+BP+CP=AC+BP=5+4.8=9.8.
直线外一点与直线上各点连接的所有线段中,垂线段最短.因此先从B向AC作垂线段BP,交AB于P,再利用勾股定理解题即可.
设AP=x,则CP=5-x,
在Rt△ABP中,BP2=AB2-AP2,
在Rt△BCP中,BP2=BC2-CP2,
∴AB2-AP2=BC2-CP2,
∴52-x2=62-(5-x)2
解得x=1.4,
在Rt△ABP中,BP= = =4.8,
∴AP+BP+CP=AC+BP=5+4.8=9.8.
直线外一点与直线上各点连接的所有线段中,垂线段最短.因此先从B向AC作垂线段BP,交AB于P,再利用勾股定理解题即可.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设AP=x,则CP=5-x,
在Rt△ABP中,BP2=AB2-AP2,
在Rt△BCP中,BP2=BC2-CP2,
∴AB2-AP2=BC2-CP2,
∴52-x2=62-(5-x)2
解得x=1.4,
在Rt△ABP中,BP= = =4.8,
∴AP+BP+CP=AC+BP=5+4.8=9.8.
在Rt△ABP中,BP2=AB2-AP2,
在Rt△BCP中,BP2=BC2-CP2,
∴AB2-AP2=BC2-CP2,
∴52-x2=62-(5-x)2
解得x=1.4,
在Rt△ABP中,BP= = =4.8,
∴AP+BP+CP=AC+BP=5+4.8=9.8.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:从B向AC作垂线段BP,交AB于P,
若AP+BP+DP最小,就是说当BP最小时,AP+BP+DP才最小,因为不论点P在AC上的那一点,AP+CP都等于AC.那么就需从B向AC作垂线段,交AC于P.先设AP=x,再利用勾股定理可得关于x的方程,解即可求x,在Rt△ABP中,利用勾股定理可求BP.那么AP+BP+CP的最小值可求
设AP=x,则CP=5-x,
在Rt△ABP中,BP2=AB2-AP2,
在Rt△BCP中,BP2=BC2-CP2,
∴AB2-AP2=BC2-CP2,
∴52-x2=62-(5-x)2
解得x=1.4,
在Rt△ABP中,BP= = =4.8,
∴AP+BP+CP=AC+BP=5+4.8=9.8.
若AP+BP+DP最小,就是说当BP最小时,AP+BP+DP才最小,因为不论点P在AC上的那一点,AP+CP都等于AC.那么就需从B向AC作垂线段,交AC于P.先设AP=x,再利用勾股定理可得关于x的方程,解即可求x,在Rt△ABP中,利用勾股定理可求BP.那么AP+BP+CP的最小值可求
设AP=x,则CP=5-x,
在Rt△ABP中,BP2=AB2-AP2,
在Rt△BCP中,BP2=BC2-CP2,
∴AB2-AP2=BC2-CP2,
∴52-x2=62-(5-x)2
解得x=1.4,
在Rt△ABP中,BP= = =4.8,
∴AP+BP+CP=AC+BP=5+4.8=9.8.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为是等腰直角三角形,所以设AP=x,那么PR=QC=x,PB为平行四边形的高,所以平行四边形的面积为PB*QC=16,即(8-x)*x=16 化简即(x-4)^2=16 所以,x=4,当p点移动了4cm的时候....
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询