如图, 已知抛物线y=x2-2(m+1)x+m2+1与x轴的正半轴相交于A, B两点,与y轴交于C(0, 5)点,O为原点。
如图,已知抛物线y=x2-2(m+1)x+m2+1与x轴的正半轴相交于A,B两点,与y轴交于C(0,5)点,O为原点。点P从A以1cm/秒的速度沿AB方向在的正半轴上移动...
如图, 已知抛物线y=x2-2(m+1)x+m2+1与x轴的正半轴相交于A, B两点, 与y轴交于C(0, 5)点, O为原点。点P从A以1cm/秒的速度沿AB方向在 的正 半 轴上移动,与此同时,点Q从O以2cm/秒的速度沿OC方向移动,用t (秒)表示移动时间。
(1)求抛物线的解析式和A, B两点的坐标;
(2)求△OPQ的面积s关于t的函数解析式,
并求自变量t的取值范围;
(3)问是否存在t值, 使以O, P, Q为顶点的三角形与△OBC 相似, 若存在,求所有的t值;若不存在, 请说明理由。
求(2)(3)详解,因为第(1)题我自己会的、、、 ~(>_<)~ 展开
(1)求抛物线的解析式和A, B两点的坐标;
(2)求△OPQ的面积s关于t的函数解析式,
并求自变量t的取值范围;
(3)问是否存在t值, 使以O, P, Q为顶点的三角形与△OBC 相似, 若存在,求所有的t值;若不存在, 请说明理由。
求(2)(3)详解,因为第(1)题我自己会的、、、 ~(>_<)~ 展开
4个回答
展开全部
m^2+1=5
so m=±2
m+1>0
so m=2
so y=x^2-6x+5
A(1,0)B(5,0)
s=(1+t)(2t)/2=t^2+t
t>=0
P(1+t,0)Q(0,2t) and OB=5 OC=5
1+t=2t so t=1
so m=±2
m+1>0
so m=2
so y=x^2-6x+5
A(1,0)B(5,0)
s=(1+t)(2t)/2=t^2+t
t>=0
P(1+t,0)Q(0,2t) and OB=5 OC=5
1+t=2t so t=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Y=X^2-6X+5 A(2,0) B(4,0)
(2) 三角形OPQ为直角三角形, 就有 S=1/2*(2+t)*2t=t^2+2t
(3) 求得三角形OBC的面积S1=1/2*5*4=10 代入(2)中求的的方程式中 即10=t^2+2t
解得 t为一正一负,时间不能取正数,所以t只有一解,即为答案!
(2) 三角形OPQ为直角三角形, 就有 S=1/2*(2+t)*2t=t^2+2t
(3) 求得三角形OBC的面积S1=1/2*5*4=10 代入(2)中求的的方程式中 即10=t^2+2t
解得 t为一正一负,时间不能取正数,所以t只有一解,即为答案!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询