如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD,OA=r
如图,已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,OA=r.(1)求证:DC是⊙O的切线;(2)求AD•OC的值;(3)若AD+OC=...
如图,已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,OA=r.
(1)求证:DC是⊙O的切线;
(2)求AD•OC的值;
(3)若AD+OC=(9/2)*r,求CD的长 展开
(1)求证:DC是⊙O的切线;
(2)求AD•OC的值;
(3)若AD+OC=(9/2)*r,求CD的长 展开
3个回答
展开全部
(1)证明:
连接OD,∵OC//AD ,∴∠DAO=∠COB,∠ADO=∠DOC
∴∠DOC=∠BOC,
∵DO=BO,CO=CO
∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º
即DC是⊙O的切线。
(2)解:
作OE⊥AD,则AE=DE,
∵⊿DEO∽⊿ODC【我不做详细证明】
∴OC:OD=OD:DE=>OC·DE=OD²
∵DE=½AD,∴AD·OC=2OD²=2r²
(3)解:
AD=(9/2)r-OC
AD·OC=2r²
OC²-(9/2)r·OC+2r²=0
解得OC1=½r(不成立),OC2=4r
CD²=OC²-OD²=16r²-r²=15r²
CD=√15r
连接OD,∵OC//AD ,∴∠DAO=∠COB,∠ADO=∠DOC
∴∠DOC=∠BOC,
∵DO=BO,CO=CO
∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º
即DC是⊙O的切线。
(2)解:
作OE⊥AD,则AE=DE,
∵⊿DEO∽⊿ODC【我不做详细证明】
∴OC:OD=OD:DE=>OC·DE=OD²
∵DE=½AD,∴AD·OC=2OD²=2r²
(3)解:
AD=(9/2)r-OC
AD·OC=2r²
OC²-(9/2)r·OC+2r²=0
解得OC1=½r(不成立),OC2=4r
CD²=OC²-OD²=16r²-r²=15r²
CD=√15r
展开全部
(1)连接OD
∵OC∥AD
∴∠COD=∠ODA,∠BOC=∠OAD
∵OA=OD
∴∠OAD=∠ODA
∴∠BOC=∠DOC
∵OB=OD,OC=OC
∴△BOC≌△DOC
∴∠ODC=∠OBC=90°
∴CD是圆O的切线
(2)P在DE的中点
证明:
延长BC,AD相交于点F
∵OA=OB,OC∥AF
∴BC=CF
∵DE∥BF
∴DP/FC=AP/AC=PE/BC
∵FC=BC
∴DP=PE
∵OC∥AD
∴∠COD=∠ODA,∠BOC=∠OAD
∵OA=OD
∴∠OAD=∠ODA
∴∠BOC=∠DOC
∵OB=OD,OC=OC
∴△BOC≌△DOC
∴∠ODC=∠OBC=90°
∴CD是圆O的切线
(2)P在DE的中点
证明:
延长BC,AD相交于点F
∵OA=OB,OC∥AF
∴BC=CF
∵DE∥BF
∴DP/FC=AP/AC=PE/BC
∵FC=BC
∴DP=PE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)连接OD
∵OC∥AD
∴∠COD=∠ODA,∠BOC=∠OAD
∵OA=OD
∴∠OAD=∠ODA
∴∠BOC=∠DOC
∵OB=OD,OC=OC
∴△BOC≌△DOC
∴∠ODC=∠OBC=90°
∴CD是圆O的切线
(2)P在DE的中点
证明:
延长BC,AD相交于点F
∵OA=OB,OC∥AF
∴BC=CF
∵DE∥BF
∴DP/FC=AP/AC=PE/BC
∵FC=BC
∴DP=PE
∵OC∥AD
∴∠COD=∠ODA,∠BOC=∠OAD
∵OA=OD
∴∠OAD=∠ODA
∴∠BOC=∠DOC
∵OB=OD,OC=OC
∴△BOC≌△DOC
∴∠ODC=∠OBC=90°
∴CD是圆O的切线
(2)P在DE的中点
证明:
延长BC,AD相交于点F
∵OA=OB,OC∥AF
∴BC=CF
∵DE∥BF
∴DP/FC=AP/AC=PE/BC
∵FC=BC
∴DP=PE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |