lim(x→∞)[∫(0积到x)(t²*e^t²)dt]/[x*e^x²]=?
2个回答
展开全部
解:∵lim(x→∞)[∫(0,x)t²e^(t²)dt]=∞
∴lim(x→∞){[∫(0,x)t²e^(t²)dt]/[xe^(x²)]}=lim(x→∞){[∫(0,x)t²e^(t²)dt]'/[xe^(x²)]'} (∞/∞型极限,应用罗比达法则)
=lim(x→∞){[x²e^(x²)]/[e^(x²)+2x²e^(x²)]}
=lim(x→∞)[x²/(1+2x²)]
=lim(x→∞)[1/(2+1/x²)]
=1/2。
∴lim(x→∞){[∫(0,x)t²e^(t²)dt]/[xe^(x²)]}=lim(x→∞){[∫(0,x)t²e^(t²)dt]'/[xe^(x²)]'} (∞/∞型极限,应用罗比达法则)
=lim(x→∞){[x²e^(x²)]/[e^(x²)+2x²e^(x²)]}
=lim(x→∞)[x²/(1+2x²)]
=lim(x→∞)[1/(2+1/x²)]
=1/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询