设点P是椭圆x^2/25+y^2/16=1上任意一点,A与F分别是椭圆的左顶点与右焦点,求PA向量·PF向量+1/4PA向量·AF
2个回答
展开全部
P的参数坐标为(5cosθ,4sinθ);
坐标A(-5,0);F(3,0);
则
向量PA=(-5-5cosθ,0-4sinθ);
向量PF=(3-5cosθ,0-4sinθ);
则 向量PA*向量PF+(1/4)向量PA*向量AF
=(-5-5cosθ)(3-5cosθ)+16sin^2 θ +(1/4)(-5-5cosθ,-4sinθ)(-2,0)
=(-5-5cosθ)(3-5cosθ)+16sin^2 θ -(1/2)(-5-5cosθ)
=(-5-5cosθ)(5/2-5cosθ)+16sin^2 θ
=25cos^2 θ +(25/2)cosθ -25/2 +16sin^2 θ
=(16-25/2) + 9cos^2 θ +(25/2)cosθ
=9cos^2 θ +(25/2)cosθ +7/2
=9*[cos^2 θ +(25/18)cosθ + (25/36)^2] +7/2 -625/144
=9*[cosθ + (25/36)]^2 +121/144
≥0+121/144
=121/144.
∴最小值为121/144
坐标A(-5,0);F(3,0);
则
向量PA=(-5-5cosθ,0-4sinθ);
向量PF=(3-5cosθ,0-4sinθ);
则 向量PA*向量PF+(1/4)向量PA*向量AF
=(-5-5cosθ)(3-5cosθ)+16sin^2 θ +(1/4)(-5-5cosθ,-4sinθ)(-2,0)
=(-5-5cosθ)(3-5cosθ)+16sin^2 θ -(1/2)(-5-5cosθ)
=(-5-5cosθ)(5/2-5cosθ)+16sin^2 θ
=25cos^2 θ +(25/2)cosθ -25/2 +16sin^2 θ
=(16-25/2) + 9cos^2 θ +(25/2)cosθ
=9cos^2 θ +(25/2)cosθ +7/2
=9*[cos^2 θ +(25/18)cosθ + (25/36)^2] +7/2 -625/144
=9*[cosθ + (25/36)]^2 +121/144
≥0+121/144
=121/144.
∴最小值为121/144
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询