已知f(x+1/x)=x²+1/x²+1,求f(x)的解析式
展开全部
设y=x
(y-1)f[(y+1)/(y-1)]+f(y)=y
(1)
设y=(x+1)/(x-1)
[(y+1)/(y-1)-1]f{[(y+1)/(y-1)+1]/[(y+1)/(y-1)-1]}+f[(y+1)/(y-1)]=(y+1)/(y-1)
[(y+1-y+1)/(y-1)f{[(y+1+y-1)/(y-1)]/[(y+1-y+1)/(y-1)]}+f[(y+1)/(y-1)]=(y+1)/(y-1)
2/(y-1)f{[2y/(y-1)]/[2/(y-1)]})]}+f[(y+1)/(y-1)]=(y+1)/(y-1)
2/(y-1)f(y)+f[(y+1)/(y-1)]=(y+1)/(y-1)
2f(y)+(y-1)f[(y+1)/(y-1)]=y+1
(2)
(2)-(1),得
f(y)=1
由y=x ,x≠-1(总感觉x≠-1这个条件不太对,应该是x≠1才对),得y≠-1
由y=(x+1)/(x-1)=1+2/(x-1),得y≠1
f(y)=1
(y≠±
1)
函数解析式为f(x)=1
(x≠±
1)
(y-1)f[(y+1)/(y-1)]+f(y)=y
(1)
设y=(x+1)/(x-1)
[(y+1)/(y-1)-1]f{[(y+1)/(y-1)+1]/[(y+1)/(y-1)-1]}+f[(y+1)/(y-1)]=(y+1)/(y-1)
[(y+1-y+1)/(y-1)f{[(y+1+y-1)/(y-1)]/[(y+1-y+1)/(y-1)]}+f[(y+1)/(y-1)]=(y+1)/(y-1)
2/(y-1)f{[2y/(y-1)]/[2/(y-1)]})]}+f[(y+1)/(y-1)]=(y+1)/(y-1)
2/(y-1)f(y)+f[(y+1)/(y-1)]=(y+1)/(y-1)
2f(y)+(y-1)f[(y+1)/(y-1)]=y+1
(2)
(2)-(1),得
f(y)=1
由y=x ,x≠-1(总感觉x≠-1这个条件不太对,应该是x≠1才对),得y≠-1
由y=(x+1)/(x-1)=1+2/(x-1),得y≠1
f(y)=1
(y≠±
1)
函数解析式为f(x)=1
(x≠±
1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:f(x+1/x)=x²+1/x²+1
=(x+1/x)²-1
所以:f(x)=x²-1
=(x+1/x)²-1
所以:f(x)=x²-1
更多追问追答
追问
f(x+1/x)=x²+1/x²+1
=(x+1/x)²-1
???
追答
f(x+1/x)=x²+2+1/x²-2+1
=(x+1/x)²-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询