初二数学知识树
老师让画知识树,实在不会,只好请教大家了.要求8k的,图文并茂,内容充实.可以传图片,也可以提意见,告诉大体思路.好的话有追加悬赏....
老师让画知识树,实在不会,只好请教大家了.要求8k的,图文并茂,内容充实.可以传图片,也可以提意见,告诉大体思路.好的话有追加悬赏.
展开
2个回答
2011-09-20
展开全部
一)运用公式法:
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a b)(a-b)
a2 2ab b2=(a b)2
a2-2ab b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a b)2=a2 2ab b2 和 (a-b)2=a2-2ab b2反过来,就可以得到:
a2 2ab b2 =(a b)2
a2-2ab b2 =(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2 2ab b2和a2-2ab b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法
我们看多项式am an bm bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am an)和(bm bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am an) (bm bn)
=a(m n) b(m n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m n),因此还能继续分解,所以
原式=(am an) (bm bn)
=a(m n) b(m n)
=(m n)
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a b)(a-b)
a2 2ab b2=(a b)2
a2-2ab b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a b)2=a2 2ab b2 和 (a-b)2=a2-2ab b2反过来,就可以得到:
a2 2ab b2 =(a b)2
a2-2ab b2 =(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2 2ab b2和a2-2ab b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法
我们看多项式am an bm bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am an)和(bm bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am an) (bm bn)
=a(m n) b(m n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m n),因此还能继续分解,所以
原式=(am an) (bm bn)
=a(m n) b(m n)
=(m n)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |