3个回答
展开全部
1. n^2[1/(n^2+1)^2+2/(n^2+2)^2+...+n/(n^2+n)^2]
≥ n^2[1/(n^2+n)^2+2/(n^2+n)^2+...+n/(n^2+n)^2]
= n^2[1+2+...+n]/[(n^2+n)^2]
= n^2[n(n+1)/2]/[(n^2+n)^2]
= (1/2)[n^4+n^3]/[n^4+2n^3+n^2]
(1/2)[n^4+n^3]/[n^4+2n^3+n^2]中令n->∞,极限是1/2
2. n^2[1/(n^2+1)^2+2/(n^2+2)^2+...+n/(n^2+n)^2]
≤ n^2[1/(n^2+1)^2+2/(n^2+1)^2+...+n/(n^2+1)^2]
= n^2[1+2+...+n]/[(n^2+1)^2]
= n^2[n(n+1)/2]/[(n^2+1)^2]
= (1/2)[n^4+n^3]/[n^4+2n^3+1]
(1/2)[n^4+n^3]/[n^4+2n^3+1]中令n->∞,极限是1/2
根据夹逼定理(准则),知道极限存在,并且极限是1/2.
≥ n^2[1/(n^2+n)^2+2/(n^2+n)^2+...+n/(n^2+n)^2]
= n^2[1+2+...+n]/[(n^2+n)^2]
= n^2[n(n+1)/2]/[(n^2+n)^2]
= (1/2)[n^4+n^3]/[n^4+2n^3+n^2]
(1/2)[n^4+n^3]/[n^4+2n^3+n^2]中令n->∞,极限是1/2
2. n^2[1/(n^2+1)^2+2/(n^2+2)^2+...+n/(n^2+n)^2]
≤ n^2[1/(n^2+1)^2+2/(n^2+1)^2+...+n/(n^2+1)^2]
= n^2[1+2+...+n]/[(n^2+1)^2]
= n^2[n(n+1)/2]/[(n^2+1)^2]
= (1/2)[n^4+n^3]/[n^4+2n^3+1]
(1/2)[n^4+n^3]/[n^4+2n^3+1]中令n->∞,极限是1/2
根据夹逼定理(准则),知道极限存在,并且极限是1/2.
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
妹的你学数分的吧....
追问
求解释。 要过程
追答
不做数分题好多年.....太蛋疼了....不好意思灌水了...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询