已知a、b、c为△ABC的三边长,求证:关于x的方程cx²-(a+b)x+c/4=0有两个不相等的实数根.

因为c不等于0,所以原方程是一元二次方程,它的判别式△=(a+b)^2-4c(c/4)=(a+b)^2-c^2=(a+b+c)(a+b-c)因为a、b、c为△ABC的三边... 因为c不等于0,所以原方程是一元二次方程,
它的判别式△=(a+b)^2-4c(c/4)=(a+b)^2-c^2=(a+b+c)(a+b-c)
因为a、b、c为△ABC的三边长,所以a+b+c>0,a+b-c>0
所以判别式△>0
所以原方程有两个不相等的实数根.

有两个不相等的正根还是
有两个不相等的负根?
展开
xuzhouliuying
高粉答主

2011-09-20 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.9亿
展开全部
设两根分别为x1,x2。由韦达定理得
x1+x2=(a+b)/c
x1x2=1/4
两根之积>0,两根同号且均不等于0;
两根之和>0 两根均为正根(若同为负根,则和<0)。
结论:两根均为正根。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式