急求等差数列通项公式和前n项和公式的证明方法~
2个回答
展开全部
解:
设数列{an}是等差数列,其公差为d,d≠0,根据等差数列的定义:
an - a(n-1) = d
∴a2- a1= d
a3 - a2 = d
a4 - a3 = d
.....
an - a(n-1) = d
上述各式相加:
an - a1 = (n-1)d
即:an = a1 + (n-1)d
令Sn = a1 + a2 +.....+ an
根据an = a1 + (n-1)d,易知,
a(n-k) + a(k+1) = a1+(n-k-1)d+a1+kd
=2a1+(n-1)d ,其中k = 0,1,2,3...n-1
当n固定不变时,上式为定值
因此:
Sn = a1 + a2 + a3 +.....+ an
Sn = an + a(n-1)+........+ a1
上式相加:
2Sn= n[2a1+(n-1)d]
Sn=na1 + n(n-1)d/2
根据an = a1 + (n-1)d
上式也可写成:
Sn =n(a1+an)/2
设数列{an}是等差数列,其公差为d,d≠0,根据等差数列的定义:
an - a(n-1) = d
∴a2- a1= d
a3 - a2 = d
a4 - a3 = d
.....
an - a(n-1) = d
上述各式相加:
an - a1 = (n-1)d
即:an = a1 + (n-1)d
令Sn = a1 + a2 +.....+ an
根据an = a1 + (n-1)d,易知,
a(n-k) + a(k+1) = a1+(n-k-1)d+a1+kd
=2a1+(n-1)d ,其中k = 0,1,2,3...n-1
当n固定不变时,上式为定值
因此:
Sn = a1 + a2 + a3 +.....+ an
Sn = an + a(n-1)+........+ a1
上式相加:
2Sn= n[2a1+(n-1)d]
Sn=na1 + n(n-1)d/2
根据an = a1 + (n-1)d
上式也可写成:
Sn =n(a1+an)/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询