如图,直径AB。CD互相垂直,p为弧BC上一动点,连PC.PA.PD,PB求证BP+AP分之CP+DP=DP分之AP

过程具体... 过程具体 展开
我是老鼠孩是米
2011-10-02
知道答主
回答量:21
采纳率:0%
帮助的人:11.6万
展开全部
连AC,AD,BD
将△ACP绕A点顺时针旋转90°,使AC与AD重合(依AB⊥CD知AC=AD)点P旋转到Q点
∴AQ=AP,CP=QD
∵∠PAQ=90°,AQ=AP
∵∠ADQ+∠ADP=∠ACP+∠ADP=180°,∴三点共线
∴∠Q=∠KPD=45°
PQ²=PA²+AQ²
PQ=2AP
即CP+DP=根号二AP
将△PBD绕D点逆时针旋转90°使BD与AD重合,点P旋转到K点
∴PD=KD,AK=PB
∵∠KDP=90°,PD=KD
∵∠KAD+∠PAD=∠PBD+∠PAD=180°,∴三点共线
∴∠K=∠KPD=45°
KP²=KD²+PD²
KP=根号二DP
即KA+AP=根号二DP
囡囡月牙
2011-09-24
知道答主
回答量:14
采纳率:0%
帮助的人:2.3万
展开全部
连AC,AD,BD
将△ACP绕A点顺时针旋转90°,使AC与AD重合(依AB⊥CD知AC=AD)点P旋转到Q点
∴AQ=AP,CP=QD
∵∠PAQ=90°,AQ=AP
∵∠ADQ+∠ADP=∠ACP+∠ADP=180°,∴三点共线
∴∠Q=∠KPD=45°
PQ²=PA²+AQ²
PQ=根号二AP
即CP+DP=根号二AP
将△PBD绕D点逆时针旋转90°使BD与AD重合,点P旋转到K点
∴PD=KD,AK=PB
∵∠KDP=90°,PD=KD
∵∠KAD+∠PAD=∠PBD+∠PAD=180°,∴三点共线
∴∠K=∠KPD=45°
KP²=KD²+PD²
KP=根号二DP
即KA+AP=根号二DP
∴BP+AP分之CP+DP=DP分之AP
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轻捷且通顺丶饼干4048
2011-09-25 · TA获得超过6.4万个赞
知道大有可为答主
回答量:3.4万
采纳率:0%
帮助的人:4413万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式