2个回答
展开全部
解:设z=1/y³,则dz/dx=(-3/y^4)(dy/dx) ==>dy/dx=(-y^4/3)(dz/dx)
代入原方程,得(-y^4/3)(dz/dx)+2xy+xy^4=0
==>dz/dx-6x/y³-3x=0
==>dz/dx-6xz-3x=0
==>dz/dx=3x(2z+1)
==>2dz/(2z+1)=6xdx
==>ln│2z+1│=3x²+ln│C│ (C是积分常数)
==>2z+1=Ce^(3x²)
==>2/y³=Ce^(3x²)-1
==>2=[Ce^(3x²)-1]y³
故原方程的通解是[Ce^(3x²)-1]y³=2 (C是积分常数)。
代入原方程,得(-y^4/3)(dz/dx)+2xy+xy^4=0
==>dz/dx-6x/y³-3x=0
==>dz/dx-6xz-3x=0
==>dz/dx=3x(2z+1)
==>2dz/(2z+1)=6xdx
==>ln│2z+1│=3x²+ln│C│ (C是积分常数)
==>2z+1=Ce^(3x²)
==>2/y³=Ce^(3x²)-1
==>2=[Ce^(3x²)-1]y³
故原方程的通解是[Ce^(3x²)-1]y³=2 (C是积分常数)。
展开全部
解:设z=1/y³,则dz/dx=(-3/y^4)(dy/dx)
==>dy/dx=(-y^4/3)(dz/dx)
代入原方程,得(-y^4/3)(dz/dx)+2xy+xy^4=0
==>dz/dx-6x/y³-3x=0
==>dz/dx-6xz-3x=0
==>dz/dx=3x(2z+1)
==>2dz/(2z+1)=6xdx
==>ln│2z+1│=3x²+ln│C│
(C是积分常数)
==>2z+1=Ce^(3x²)
==>2/y³=Ce^(3x²)-1
==>2=[Ce^(3x²)-1]y³
故原方程的通解是[Ce^(3x²)-1]y³=2
(C是积分常数)。
==>dy/dx=(-y^4/3)(dz/dx)
代入原方程,得(-y^4/3)(dz/dx)+2xy+xy^4=0
==>dz/dx-6x/y³-3x=0
==>dz/dx-6xz-3x=0
==>dz/dx=3x(2z+1)
==>2dz/(2z+1)=6xdx
==>ln│2z+1│=3x²+ln│C│
(C是积分常数)
==>2z+1=Ce^(3x²)
==>2/y³=Ce^(3x²)-1
==>2=[Ce^(3x²)-1]y³
故原方程的通解是[Ce^(3x²)-1]y³=2
(C是积分常数)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询