谁能帮忙讲解一下分类变量的回归分析?自变量和因变量都为分类变量,请问怎样用SpSS做回归分析?

自变量共分为2类,因变量分为4类,ParameterEstimatesVAR00002a95%ConfidenceIntervalforExp(B)BStd.ErrorW... 自变量共分为2类,因变量分为4类,

Parameter Estimates
VAR00002a 95% Confidence Interval for Exp(B)
B Std. Error Wald df Sig. Exp(B) Lower Bound Upper Bound
2.00 Intercept -.693 1.225 .320 1 .571
[retinopathy=0] .421 1.247 .114 1 .736 1.524 .132 17.555
[retinopathy=1] 1.030 1.358 .575 1 .448 2.800 .196 40.057
[retinopathy=9] 0b . . 0 . . . .
3.00 Intercept -18.211 .558 1065.951 1 .000
[retinopathy=0] 17.246 .630 748.353 1 .000 3.088E7 8975631.857 1.062E8
[retinopathy=1] 18.798 .000 . 1 . 1.459E8 1.459E8 1.459E8
[retinopathy=9] 0b . . 0 . . . .
4.00 Intercept -.693 1.225 .320 1 .571
[retinopathy=0] -.965 1.284 .565 1 .452 .381 .031 4.719
[retinopathy=1] .693 1.378 .253 1 .615 2.000 .134 29.808
[retinopathy=9] 0b . . 0 . . . .
a. The reference category is: 1.00.
b. This parameter is set to zero because it is redundant.

是用多元回归分析的结果,请帮忙解释一下此结果,谢谢!另外我这样分析对不对,如果不对,请问用何种方法分析?
展开
 我来答
电子数码小百科NW
2020-03-07 · TA获得超过6491个赞
知道答主
回答量:15
采纳率:0%
帮助的人:3886
展开全部

1、首先打开一份要进行线性回归分析的SPSS数据,然后点击【分析-回归-线性】。

2、然后将因变量和自变量分别放入相应的框中。

3、接着可以进行选择变量,即对变量进行筛选,并利用右侧的“规则”按钮建立一个选择条件,这样,只有满足该条件的记录才能进行回归分析。

4、接着点击右侧的统计量打开统计量子对话框,然后勾选图中的选项。

5、接着打开选项子对话框,然后勾选【在等式中包含常亮】。

6、这里需要先对自变量和因变量进行方差齐性检验,然后能得到a=110.190,b=-0.391。线性回归方程结果为:y=110.190-0.391x。

光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
凹凸曼mon
2019-08-31 · TA获得超过1097个赞
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

分类变量为因变量,连续变量为自变量,做逻辑回归。或者是分类变量为自变量,连续变量为因变量,而且是做线性关系,则先将分类变量设置虚拟变量,再做线性回归。

线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。

线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。

用一个方程式来表示它,即 Y=a+b*X + e,其中 a 表示截距,b 表示直线的斜率,e 是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。

扩展资料

要点:

1、自变量与因变量之间必须有线性关系。

2、多元回归存在多重共线性,自相关性和异方差性。

3、线性回归对异常值非常敏感。它会严重影响回归线,最终影响预测值。

参考资料来源:百度百科-回归分析

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
游戏放松小助手
高粉答主

2020-08-13 · 我是游戏小达人,乐于助人
游戏放松小助手
采纳数:32 获赞数:76867

向TA提问 私信TA
展开全部

1、首先在数据视图窗口编辑入数据,在变量视图窗口进行编辑,根据每个变量德 类型,宽度等属性进行输入,如图所示。

2、然后点击【分析】-【回归】【线性L】即可出现下图。

3、接着选择右边的【统计量】-选择出需要的统计分析数据,然后点击继续--和确定。

4、这是一个基本的输出结果的界面信息,这些信息会告诉你:模型的汇总及协方差是需要注意查看的。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
吕秀才
推荐于2017-12-15 · 知道合伙人金融证券行家
吕秀才
知道合伙人金融证券行家
采纳数:3165 获赞数:19827
2007年心理学硕士毕业,从事市场研究与分析工作多年,善于营

向TA提问 私信TA
展开全部
如果因变量是分类变量,哪你采用多元回归分析就是错误的了
应该采用logistic回归来进行的
因变量的4分类是否属于有序的还是无序的
如果有序,则使用有序多分类logistic回归
若无序,则使用无序多分logistic回归
追问
可是当我应用Binary logistic回归时,结果出错,搞不明白?谢谢!
追答
你的因变量是二分类变量的话,就是用binary logistic回归
如果出错 可能是你的数据有问题 无法计算出来吧
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式