用数列极限的精确定义证明下面的极限

lim[5+2n/(1-3n)]=-2/3打的好乱,帮帮我吧!... lim[5+2n/(1-3n)]=-2/3 打的好乱,帮帮我吧! 展开
 我来答
heanmen
2011-10-01 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4283
采纳率:100%
帮助的人:2563万
展开全部
解:对任意ε>0,解不等式
│(5+2n)/(1-3n)+2/3│=│17/(3(1-3n))│=17/(3(3n-1))<18/(3(3n-3))=18/(9(n-1))=2/(n-1)<ε
得n>2/ε+1,取N=[2/ε+1]。
于是,对任意ε>0,总存在N=[2/ε+1]。当n>N时,有│(5+2n)/(1-3n)+2/3│<ε。
故lim(n->∞)[(5+2n)/(1-3n)]=-2/3。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式