圆的周长计算公式如何证明

abigpig000
推荐于2020-01-30 · TA获得超过4237个赞
知道大有可为答主
回答量:1572
采纳率:0%
帮助的人:664万
展开全部
对于半径为R的扇形,其圆心角为a,所对的弦长,由三角函数可得,2Rsin(a/2),内接多边形周长为2π/aX2Rsin(a/2),圆一周所对圆心角是2π,当然可以换个符号表示,不另讨论
相应的,外切多边形的算法类似,周长为2π/aX2Rtan(a/2)

当a接近于无穷小时,内接多边形周长为lim(a→0+)(2π/aX2Rsin(a/2)),外切多边形周长为
lim(a→0+)(2π/aX2Rtan(a/2)),对于极限lim(a→0+)(sina/a),lim(a→0+)(tana/a),a必须用弧度计算,如果a是角度,需要转化为弧度,这两个极限都是1

圆周长在这两个极限之间,大于内接圆周长,小于外切圆周长,而极限相等,由夹逼定理 2πRXlim(a→0+)(sin(a/2)/(a/2))=2πRXlim(a→0+)(tan(a/2)/(a/2))=2πR
所以圆周长等于2πR
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式