F1,F2是椭圆4y^2+5x^2=20的两个焦点,P为椭圆上一点,且角F1PF2=30°,则三角形F1PF2的面积为?
F1,F2是椭圆4y^2+5x^2=20的两个焦点,P为椭圆上一点,且角F1PF2=30°,则三角形F1PF2的面积为?(要是解余弦定理,怎么解简便啊!最好有别的方法)...
F1,F2是椭圆4y^2+5x^2=20的两个焦点,P为椭圆上一点,且角F1PF2=30°,则三角形F1PF2的面积为?(要是解余弦定理,怎么解简便啊!最好有别的方法)
展开
展开全部
4y^2+5x^2=20
即x^2/4+y^2/5=1
a^2=5,b^2=4, c^2=a^2-b^2=5-4=1
令F1P=x,则F2P=2√5-x
利用余弦定理得
F1F2^2=F1P^2+F2P^2-2F1P*F2P*cos角F1PF2
4=(F1P+F2P)^2-2F1P*F2P-2F1P*F2P*cos30度
=20-(2+√3)F1P*F2P
F1P*F2P=16/(2+√3)
利用正弦定理有面积=1/2*F1P*F2P*sin角F1PF2=1/4*16/(2+√3)=4(2-√3)
即x^2/4+y^2/5=1
a^2=5,b^2=4, c^2=a^2-b^2=5-4=1
令F1P=x,则F2P=2√5-x
利用余弦定理得
F1F2^2=F1P^2+F2P^2-2F1P*F2P*cos角F1PF2
4=(F1P+F2P)^2-2F1P*F2P-2F1P*F2P*cos30度
=20-(2+√3)F1P*F2P
F1P*F2P=16/(2+√3)
利用正弦定理有面积=1/2*F1P*F2P*sin角F1PF2=1/4*16/(2+√3)=4(2-√3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询