11个回答
展开全部
追问
能解释一下有关“四点共圆”的内容吗?
追答
所谓四点共元,即四个点都在同一个元上。
如果一个四边形的对角之和等于180°,那么这个四边形的四个顶点共元。
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
2011-09-23 · 知道合伙人教育行家
关注
展开全部
∵ABCD是正方形
∴角ABE=角BCF=90°,AB=BC=CD
又:E、F分别是BC、CD的中点
∴BE=CF
在三角形ABE与△BCF中,AB=BC,角ABE=角BCF,BE=CF
∴△ABE ≌ △BCF
∴AE=BF
∵△ABE ≌ △BCF
∴角BAE=角CBF
又:角BAE+角BEG=90°
∴角CBF+角BEG=90°
∴角EGF = 角EBG+角BEG=角CBF+角BEG=90°
∴AE⊥BF
做DM∥FB,分别交AB、AE于M、N
∵AE⊥BF,DM∥FB
∴DM⊥AE
∴DN是△DAG的高线
又:BN∥FD,DM∥FB
∴MBFD是平行四边形
∴MB=FD=1/2BC=1/2AB,即M是AB中点
又:MN∥BG
∴N是AG中点
∴DN是是△DAG的中线
∵DN是△DAG的高线和中线
∴△DAG是等腰三角形
∴AD=GD
∴角ABE=角BCF=90°,AB=BC=CD
又:E、F分别是BC、CD的中点
∴BE=CF
在三角形ABE与△BCF中,AB=BC,角ABE=角BCF,BE=CF
∴△ABE ≌ △BCF
∴AE=BF
∵△ABE ≌ △BCF
∴角BAE=角CBF
又:角BAE+角BEG=90°
∴角CBF+角BEG=90°
∴角EGF = 角EBG+角BEG=角CBF+角BEG=90°
∴AE⊥BF
做DM∥FB,分别交AB、AE于M、N
∵AE⊥BF,DM∥FB
∴DM⊥AE
∴DN是△DAG的高线
又:BN∥FD,DM∥FB
∴MBFD是平行四边形
∴MB=FD=1/2BC=1/2AB,即M是AB中点
又:MN∥BG
∴N是AG中点
∴DN是是△DAG的中线
∵DN是△DAG的高线和中线
∴△DAG是等腰三角形
∴AD=GD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
取ab的中点h,连接dh,交ae于h
∵四边形abcd是正方形
∴ab=bc=cd,∠abe=∠bcf=90º
∵e,f分别是bc,cd的中点
∴be=cf
∴⊿abe≌⊿bcf(sas)
∴∠bae=∠cbf
∵∠bae+∠bea=90º
∴∠agb=∠cbf+∠beg=90º
∵bh=df,bh//df
∴四边形bfdh是平行四边形
∴bf//hd
∴∠ahh=∠agb=90º
∵ah=bh
∴ah=gh【平行线等分线段定理】
∴dh垂直平分ag
∴ad=gd【垂直平分线上的点到线段两端的距离相等】
希望能帮到你,祝学习进步,记得采纳,谢谢
取ab的中点h,连接dh,交ae于h
∵四边形abcd是正方形
∴ab=bc=cd,∠abe=∠bcf=90º
∵e,f分别是bc,cd的中点
∴be=cf
∴⊿abe≌⊿bcf(sas)
∴∠bae=∠cbf
∵∠bae+∠bea=90º
∴∠agb=∠cbf+∠beg=90º
∵bh=df,bh//df
∴四边形bfdh是平行四边形
∴bf//hd
∴∠ahh=∠agb=90º
∵ah=bh
∴ah=gh【平行线等分线段定理】
∴dh垂直平分ag
∴ad=gd【垂直平分线上的点到线段两端的距离相等】
希望能帮到你,祝学习进步,记得采纳,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
取ab的中点h,连接dh,交ae于h
∵四边形abcd是正方形
∴ab=bc=cd,∠abe=∠bcf=90º
∵e,f分别是bc,cd的中点
∴be=cf
∴⊿abe≌⊿bcf(sas)
∴∠bae=∠cbf
∵∠bae+∠bea=90º
∴∠agb=∠cbf+∠beg=90º
∵bh=df,bh//df
∴四边形bfdh是平行四边形
∴bf//hd
∴∠ahh=∠agb=90º
∵ah=bh
∴ah=gh【平行线等分线段定理】
∴dh垂直平分ag
∴ad=gd【垂直平分线上的点到线段两端的距离相等】
希望能帮到你,祝学习进步,记得采纳,谢谢
取ab的中点h,连接dh,交ae于h
∵四边形abcd是正方形
∴ab=bc=cd,∠abe=∠bcf=90º
∵e,f分别是bc,cd的中点
∴be=cf
∴⊿abe≌⊿bcf(sas)
∴∠bae=∠cbf
∵∠bae+∠bea=90º
∴∠agb=∠cbf+∠beg=90º
∵bh=df,bh//df
∴四边形bfdh是平行四边形
∴bf//hd
∴∠ahh=∠agb=90º
∵ah=bh
∴ah=gh【平行线等分线段定理】
∴dh垂直平分ag
∴ad=gd【垂直平分线上的点到线段两端的距离相等】
希望能帮到你,祝学习进步,记得采纳,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)RT△ABE及RT△CBF中,∠ABE=CBF=90°,AB=CB,BE=CF,所以RT△ABE≌RT△CBF,即AE=BF且∠BAE=∠CBF,所以∠CBF+∠AEB=∠BAE+∠AEB=90°,即AE⊥BF。
2)取AB中点H,连DH交AE与K,不难知BH//=FD,所以四边形DHBF是平行四边形。所以HK//BG。有H是AB中点,所以HK是△ABG的中位线,所以K是AG中点,又因AE⊥BF,所以DK⊥AG,即△ADG的AG边的中线及高重合,不难知△ADG是等腰三角形,AD=GD。
2)取AB中点H,连DH交AE与K,不难知BH//=FD,所以四边形DHBF是平行四边形。所以HK//BG。有H是AB中点,所以HK是△ABG的中位线,所以K是AG中点,又因AE⊥BF,所以DK⊥AG,即△ADG的AG边的中线及高重合,不难知△ADG是等腰三角形,AD=GD。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询