如图,正方形ABCD中,E、F分别是BC、CD的中点,AE、BF相交于点G,连接GD,求证:

1、AE=BF,AE⊥BF;2、AD=GD... 1、AE=BF,AE⊥BF;
2、AD=GD
展开
寒窗冷砚
2011-09-23 · TA获得超过2.9万个赞
知道大有可为答主
回答量:4901
采纳率:81%
帮助的人:468万
展开全部

1、证明:在RT△ABE和RT△BCF中

因为:AB=BC,BE=CF

所以:这两个直角三角形全等

所以:AE=BF,  ∠BEG=∠BFC

在△BEG和△BFC中:∠BEG=∠BFC,公共角∠EBG=∠FBC

所以;这两个三角形相似,有∠BGE=∠BCF=90°

即:AE⊥BF

2、由∠AGF=∠ADF=90°得知A, G, F, D四点共元,

所以:∠DAG=∠BFC,∠AGD=∠AFD

而:由△ADF≌△BCF得知∠AFD=∠BFC

所以:∠AGD=∠BFC=∠DAG

即:△ADG是等腰三角形

所以:AD=DG

追问
能解释一下有关“四点共圆”的内容吗?
追答
所谓四点共元,即四个点都在同一个元上。
如果一个四边形的对角之和等于180°,那么这个四边形的四个顶点共元。
买昭懿007
2011-09-23 · 知道合伙人教育行家
买昭懿007
知道合伙人教育行家
采纳数:35959 获赞数:160770
毕业于山东工业大学机械制造专业 先后从事工模具制作、设备大修、设备安装、生产调度等工作

向TA提问 私信TA
展开全部
∵ABCD是正方形
∴角ABE=角BCF=90°,AB=BC=CD
又:E、F分别是BC、CD的中点
∴BE=CF
在三角形ABE与△BCF中,AB=BC,角ABE=角BCF,BE=CF
∴△ABE ≌ △BCF
∴AE=BF

∵△ABE ≌ △BCF
∴角BAE=角CBF
又:角BAE+角BEG=90°
∴角CBF+角BEG=90°
∴角EGF = 角EBG+角BEG=角CBF+角BEG=90°
∴AE⊥BF

做DM∥FB,分别交AB、AE于M、N
∵AE⊥BF,DM∥FB
∴DM⊥AE
∴DN是△DAG的高线
又:BN∥FD,DM∥FB
∴MBFD是平行四边形
∴MB=FD=1/2BC=1/2AB,即M是AB中点
又:MN∥BG
∴N是AG中点
∴DN是是△DAG的中线
∵DN是△DAG的高线和中线
∴△DAG是等腰三角形
∴AD=GD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
宛兰芳丙桃
2019-01-20 · TA获得超过3万个赞
知道大有可为答主
回答量:1.2万
采纳率:35%
帮助的人:717万
展开全部
证明:
取ab的中点h,连接dh,交ae于h
∵四边形abcd是正方形
∴ab=bc=cd,∠abe=∠bcf=90º
∵e,f分别是bc,cd的中点
∴be=cf
∴⊿abe≌⊿bcf(sas)
∴∠bae=∠cbf
∵∠bae+∠bea=90º
∴∠agb=∠cbf+∠beg=90º
∵bh=df,bh//df
∴四边形bfdh是平行四边形
∴bf//hd
∴∠ahh=∠agb=90º
∵ah=bh
∴ah=gh【平行线等分线段定理】
∴dh垂直平分ag
∴ad=gd【垂直平分线上的点到线段两端的距离相等】
希望能帮到你,祝学习进步,记得采纳,谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
毋迎南彭菲
2019-07-01 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:734万
展开全部
证明:
取ab的中点h,连接dh,交ae于h
∵四边形abcd是正方形
∴ab=bc=cd,∠abe=∠bcf=90º
∵e,f分别是bc,cd的中点
∴be=cf
∴⊿abe≌⊿bcf(sas)
∴∠bae=∠cbf
∵∠bae+∠bea=90º
∴∠agb=∠cbf+∠beg=90º
∵bh=df,bh//df
∴四边形bfdh是平行四边形
∴bf//hd
∴∠ahh=∠agb=90º
∵ah=bh
∴ah=gh【平行线等分线段定理】
∴dh垂直平分ag
∴ad=gd【垂直平分线上的点到线段两端的距离相等】
希望能帮到你,祝学习进步,记得采纳,谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
桑榆别有重阳4
2011-09-23 · TA获得超过1119个赞
知道小有建树答主
回答量:386
采纳率:100%
帮助的人:343万
展开全部
1)RT△ABE及RT△CBF中,∠ABE=CBF=90°,AB=CB,BE=CF,所以RT△ABE≌RT△CBF,即AE=BF且∠BAE=∠CBF,所以∠CBF+∠AEB=∠BAE+∠AEB=90°,即AE⊥BF。
2)取AB中点H,连DH交AE与K,不难知BH//=FD,所以四边形DHBF是平行四边形。所以HK//BG。有H是AB中点,所以HK是△ABG的中位线,所以K是AG中点,又因AE⊥BF,所以DK⊥AG,即△ADG的AG边的中线及高重合,不难知△ADG是等腰三角形,AD=GD。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式