若二次函数y=ax²+bx+c的图像经过点A(1,-3),定点为M,且方程ax²+bx+c=12的两根为6,-2。判断抛物

若二次函数y=ax²+bx+c的图像经过点A(1,-3),定点为M,且方程ax²+bx+c=12的两根为6,-2。判断抛物线上是否存在K,是∠OMK=... 若二次函数y=ax²+bx+c的图像经过点A(1,-3),定点为M,且方程ax²+bx+c=12的两根为6,-2。判断抛物线上是否存在K,是∠OMK=90°,说明理由 展开
hrcren
2011-09-23 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4449
采纳率:80%
帮助的人:2002万
展开全部
过点A => -3=a+b+c
ax²+bx+c=12两根为6,-2
6-2=4=-b/a -2*6=-12=(c-12)/a
联立三个方程,解得a=1, b=-4, c=0
∴抛物线方程为y=x²-4x=x(x-4), 过定点M(4,0)和O(0,0)
∵OM∥x轴,欲使∠OMK=90°,必使MK⊥OM,∴点K横坐标必然与M相同
即当x=4时,抛物线与直线x=4有两个交点M和K,这显然是不可能的
∴抛物线上不存在点K,使∠OMK=90°
(备注:若是∠OKM=90°倒是可能存在一个点的,在x轴下方)
希望对你有帮助!
追问
在X轴的下方不可能吧
追答
抛物线开口向上,O,M为x轴上的交点,若在x轴上方的抛物线上的点,与OM成的角是钝角了
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式