高中学科研究性学习怎样写啊?(步骤)
1个回答
展开全部
浅述对高中数学研究性学习的认识和实践
摘要:数学研究性学习是指以培养学生的数学创新精神和创造能力为目的的教学课程。由于教师教学观念和教学行为形成定式的约束,在实施数学研究性学习中还存在很多问题。笔者结合自己的教学经验,提出了“情境法”和“问题法”研究性教学方法,相信对高中数学有借鉴作用。
关键词:高中数学 研究性学习 情境法 问题法
2001年4月,教育部颁发了普通高中“研究性学习”实施指南的通知以来,研究性学习就成为基础教育领域出现频率较高的一个名词。那么究竟什么是研究性学习,几年来高中数学研究性学习的进展如何,存在哪些主要问题,针对这种现状广大一线教师应该如何结合日常教学活动做好研究性学习的教学呢?本文拟就这几个问题进行探讨。
一、研究性学习基本涵义
所谓数学研究性学习,是指主要以培养学生的数学创新精神和创造能力为目的的教学课程。它主要是给学生介绍数学科学研究的基本过程与方法,指导学生开展数学课题研究。它要求给学生提供探究的问题和探究的手段,让学生自主探究学习的过程,因而具有研究性;它从问题的提出、方案的设计与实施,到得出结论,均由学生来做,因而具有自主创新性;它一般要通过调查、实验、小课题研究、专题讨论、社会实践等方式进行学习,因而具有开放性和实践性。
二、 研究性学习中存在问题
长期以来,相当一部分教师的教学观念和教学行为形成定式,在教学内容和教学条件变化不大的情况下,要实现教学行为方式的重大转变从而指导学生改变学习方式,需要一个较长的适应过程。事实上,目前高中数学教学中进行的研究性学习只浮于表面,对于新教材中有关于研究性学习的课题,大多数教师并没有按照研究性学习的方式让学生亲历知识的发现、检验与论证的过程,而是采用了变相灌输的方式促使学生记住结论而已。其实,在高中数学教学中如何处理好基础知识的教学、基本技能的训练与培养探究能力、创新精神的关系,目前仍是有待解决的课题。也正是因为如此,现在将研究性学习作为数学学习的一种新类型,列入课程计划,使之成为有目标、有实施要求、实施渠道和评价标准才是十分必要的。而且通过进行研究性学习,高中数学新课程标准所强调的学生学习方式的转变,教师教学观念、教学行为的改变才能比较容易实现。不过,这并不是说只有在研究性学习活动中才进行研究性学习,也不意味着传统的高中数学学科课程的教学中不能进行研究性学习。学科课程的教学与研究性学习恰恰是相辅相成的。只要处理得当,原有的课程内容也能在一定程度上支持学生的研究性学习的展开。而且,在高中数学教学中,既打好基础,又培养学生的创造精神和实践能力,是可能的,也是必要的,更是我们应该追求的教学上的很高境界。
三、研究性学习方法
目前,二期课改已在我校高中阶段全面推开,这对所有教师都是一个新的考验。研究性学习的使用不仅符合课改的要求,而且也是针对当前高中数学教学过程中仍存在的教学方法单一、理论与实际脱节、课堂氛围沉闷等问题所提出的教学方法。以下是笔者在实践中总结出的适应于当前课改的两种研究性学习方法。
方法一:情境法
教师在教学中可以采用引趣、激疑、悬念、讨论等多种形式激发学生的求知欲,活跃课堂气氛,特别是在讲授新课时,可根据课题创设问题情境,使学生对所述问题感兴趣,并激发他们的创造性思维,从而解决问题。例如,在学完函数的奇偶性和单调性后,教师提出这样的问题:设a、b为常数,且a≠0,b≠0,研究函数f (x)=ax+b/x的奇偶性和单调性。本题并没有涉及更深的数学知识,而是学生熟知的两种函数——正比例函数f(x)=kx(k≠0)与反比例函数f(x)=k/x(k≠0)的和,这题的特点是学生利用近阶段所学的数学知识,通过探究、合作和教师的适当指导,都能很快得到解决,具有“短、平、快”的特点。
方法二:问题法
数学研究性学习的过程就是围绕着一个需要解决的数学问题而展开,经过学生直接参与研究,并最终实现问题解决而结束,学生学习数学的过程本身就是一个问题解决的过程。因此,使学生能够将学到的数学知识应用到解决实际问题中去,也是研究性学习的一个重要的方面。例如,学习了正弦定理和余弦定理后,教师向学生布置利用解三角形的知识进行建筑高度的测量研究。如测量嘉定法华塔高度的方案,先选定一点A,在A点测得塔顶的仰角。为30°,再向前取一点B,在D点测得塔顶的仰角旦为45°,用皮尺测得A、B两点间的距离为a,见下图。设BD=x,在Rt△ACD中,∵a =30°, 。在Rt△BCD中,∵日=45°,于是 ,解得 。∴嘉定法华塔高度 。一方面使学生学习的数学理论与实际相结合,另一方面,调动了学生的学习积极性,拓展了思维,使得教学活动更有效地进行。
C
B A
D
图1:问题法求解塔高
四、结束语
研究性学习作为教育改革的新事物还有很多值得重视与探讨的问题。在数学教学中,既打好基础,满足眼前利益,又要体现出研究性学习的性质和价值,培养创新精神和实践能力,实现可持续发展,是数学教学的理想状态,这种理想状态的实现,现在还存在诸多困难。但是笔者认为,传统的数学教学应注入研究性学习的时代活水是不容置疑的,广大的一线高中数学教师应该积极探索研究性学习教学方法,广泛交流经验,使我国的高中数学研究性学习教学更进一个台阶。
参考文献:
1. 范宝忠,高中数学新教材教学中开展研究性学习的思考[J]。兵团教育学院学报,2006年 第4期。
2. 陆开扬,高中数学教学中对学生研究性学习进行分层指导的探索[J]。教育导刊,2006年10月。
仅供参考,请自借鉴
希望对您有帮助
O382011年
摘要:数学研究性学习是指以培养学生的数学创新精神和创造能力为目的的教学课程。由于教师教学观念和教学行为形成定式的约束,在实施数学研究性学习中还存在很多问题。笔者结合自己的教学经验,提出了“情境法”和“问题法”研究性教学方法,相信对高中数学有借鉴作用。
关键词:高中数学 研究性学习 情境法 问题法
2001年4月,教育部颁发了普通高中“研究性学习”实施指南的通知以来,研究性学习就成为基础教育领域出现频率较高的一个名词。那么究竟什么是研究性学习,几年来高中数学研究性学习的进展如何,存在哪些主要问题,针对这种现状广大一线教师应该如何结合日常教学活动做好研究性学习的教学呢?本文拟就这几个问题进行探讨。
一、研究性学习基本涵义
所谓数学研究性学习,是指主要以培养学生的数学创新精神和创造能力为目的的教学课程。它主要是给学生介绍数学科学研究的基本过程与方法,指导学生开展数学课题研究。它要求给学生提供探究的问题和探究的手段,让学生自主探究学习的过程,因而具有研究性;它从问题的提出、方案的设计与实施,到得出结论,均由学生来做,因而具有自主创新性;它一般要通过调查、实验、小课题研究、专题讨论、社会实践等方式进行学习,因而具有开放性和实践性。
二、 研究性学习中存在问题
长期以来,相当一部分教师的教学观念和教学行为形成定式,在教学内容和教学条件变化不大的情况下,要实现教学行为方式的重大转变从而指导学生改变学习方式,需要一个较长的适应过程。事实上,目前高中数学教学中进行的研究性学习只浮于表面,对于新教材中有关于研究性学习的课题,大多数教师并没有按照研究性学习的方式让学生亲历知识的发现、检验与论证的过程,而是采用了变相灌输的方式促使学生记住结论而已。其实,在高中数学教学中如何处理好基础知识的教学、基本技能的训练与培养探究能力、创新精神的关系,目前仍是有待解决的课题。也正是因为如此,现在将研究性学习作为数学学习的一种新类型,列入课程计划,使之成为有目标、有实施要求、实施渠道和评价标准才是十分必要的。而且通过进行研究性学习,高中数学新课程标准所强调的学生学习方式的转变,教师教学观念、教学行为的改变才能比较容易实现。不过,这并不是说只有在研究性学习活动中才进行研究性学习,也不意味着传统的高中数学学科课程的教学中不能进行研究性学习。学科课程的教学与研究性学习恰恰是相辅相成的。只要处理得当,原有的课程内容也能在一定程度上支持学生的研究性学习的展开。而且,在高中数学教学中,既打好基础,又培养学生的创造精神和实践能力,是可能的,也是必要的,更是我们应该追求的教学上的很高境界。
三、研究性学习方法
目前,二期课改已在我校高中阶段全面推开,这对所有教师都是一个新的考验。研究性学习的使用不仅符合课改的要求,而且也是针对当前高中数学教学过程中仍存在的教学方法单一、理论与实际脱节、课堂氛围沉闷等问题所提出的教学方法。以下是笔者在实践中总结出的适应于当前课改的两种研究性学习方法。
方法一:情境法
教师在教学中可以采用引趣、激疑、悬念、讨论等多种形式激发学生的求知欲,活跃课堂气氛,特别是在讲授新课时,可根据课题创设问题情境,使学生对所述问题感兴趣,并激发他们的创造性思维,从而解决问题。例如,在学完函数的奇偶性和单调性后,教师提出这样的问题:设a、b为常数,且a≠0,b≠0,研究函数f (x)=ax+b/x的奇偶性和单调性。本题并没有涉及更深的数学知识,而是学生熟知的两种函数——正比例函数f(x)=kx(k≠0)与反比例函数f(x)=k/x(k≠0)的和,这题的特点是学生利用近阶段所学的数学知识,通过探究、合作和教师的适当指导,都能很快得到解决,具有“短、平、快”的特点。
方法二:问题法
数学研究性学习的过程就是围绕着一个需要解决的数学问题而展开,经过学生直接参与研究,并最终实现问题解决而结束,学生学习数学的过程本身就是一个问题解决的过程。因此,使学生能够将学到的数学知识应用到解决实际问题中去,也是研究性学习的一个重要的方面。例如,学习了正弦定理和余弦定理后,教师向学生布置利用解三角形的知识进行建筑高度的测量研究。如测量嘉定法华塔高度的方案,先选定一点A,在A点测得塔顶的仰角。为30°,再向前取一点B,在D点测得塔顶的仰角旦为45°,用皮尺测得A、B两点间的距离为a,见下图。设BD=x,在Rt△ACD中,∵a =30°, 。在Rt△BCD中,∵日=45°,于是 ,解得 。∴嘉定法华塔高度 。一方面使学生学习的数学理论与实际相结合,另一方面,调动了学生的学习积极性,拓展了思维,使得教学活动更有效地进行。
C
B A
D
图1:问题法求解塔高
四、结束语
研究性学习作为教育改革的新事物还有很多值得重视与探讨的问题。在数学教学中,既打好基础,满足眼前利益,又要体现出研究性学习的性质和价值,培养创新精神和实践能力,实现可持续发展,是数学教学的理想状态,这种理想状态的实现,现在还存在诸多困难。但是笔者认为,传统的数学教学应注入研究性学习的时代活水是不容置疑的,广大的一线高中数学教师应该积极探索研究性学习教学方法,广泛交流经验,使我国的高中数学研究性学习教学更进一个台阶。
参考文献:
1. 范宝忠,高中数学新教材教学中开展研究性学习的思考[J]。兵团教育学院学报,2006年 第4期。
2. 陆开扬,高中数学教学中对学生研究性学习进行分层指导的探索[J]。教育导刊,2006年10月。
仅供参考,请自借鉴
希望对您有帮助
O382011年
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询