如图,角ABC=90度,AB=BC,D为AC上一点,分别过AC作BD的垂线,垂足分别为EF 求证:EF=CF—AE

从焮我1900
2011-09-24 · TA获得超过161个赞
知道答主
回答量:58
采纳率:0%
帮助的人:64.8万
展开全部
∵CF⊥BE AE⊥BE
∴∠CFE=∠AEF=90
∵AB=BC
∴ ∠BAC= ∠BCA
∴∠BAC= ∠BCA=(180- ∠ABC)/2=90/2=45
∵ ∠BAE+ ∠ABE=90 ∠FBC=FCB=90 ∠ABE+∠FBC=90
∴ ∠BAE=∠FCB
在△ABE与△BFC中
∠CFE=∠AEF
∠BAE=∠FCB
AB=AC
△ABE≌△BFC
∴AE=BF BE=CF
∴EF=EB-BF=CF-AE
望采纳~^.^~

参考资料: 自己

lixinda51999
2011-09-24
知道答主
回答量:44
采纳率:0%
帮助的人:17.8万
展开全部
∵CF⊥BE AE⊥BE
∴∠CFE=∠AEF=90
∵AB=BC
∴ ∠BAC= ∠BCA
∴∠BAC= ∠BCA=(180- ∠ABC)/2=90/2=45
∵ ∠BAE+ ∠ABE=90 ∠FBC=FCB=90 ∠ABE+∠FBC=90
∴ ∠BAE=∠FCB
在△ABE与△BFC中
∠CFE=∠AEF
∠BAE=∠FCB
AB=AC
△ABE≌△BFC
∴AE=BF BE=CF
∴EF=EB-BF=CF-AE

禁止抄袭
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
首师英语教育
2011-10-06 · 超过14用户采纳过TA的回答
知道答主
回答量:94
采纳率:0%
帮助的人:42.1万
展开全部
∵CF⊥BE AE⊥BE
∴∠CFE=∠AEF=90
∵AB=BC
∴ ∠BAC= ∠BCA
∴∠BAC= ∠BCA=(180- ∠ABC)/2=90/2=45
∵ ∠BAE+ ∠ABE=90 ∠FBC=FCB=90 ∠ABE+∠FBC=90
∴ ∠BAE=∠FCB
在△ABE与△BFC中
∠CFE=∠AEF
∠BAE=∠FCB
AB=AC
△ABE≌△BFC
∴AE=BF BE=CF
∴EF=EB-BF=CF-AE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
rdfz王任飞
2011-10-07
知道答主
回答量:7
采纳率:0%
帮助的人:1.2万
展开全部
∵CF⊥BE AE⊥BE
∴∠CFE=∠AEF=90°
∵AB=BC
∴ ∠BAC= ∠BCA
∴∠BAC= ∠BCA=(180- ∠ABC)/2=90°/2=45°
∵ ∠BAE+ ∠ABE=90° ∠FBC=FCB=90° ∠ABE+∠FBC=90°
∴ ∠BAE=∠FCB
在△ABE与△BFC中
∠CFE=∠AEF
∠BAE=∠FCB
AB=AC
△ABE≌△BFC
∴AE=BF BE=CF
∴EF=EB-BF=CF-AE
这道题其实蛮简单,最好先自己想想,在来看答案!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式