
如图所示,已知在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
若点M,N分别在线段AB,AC上的点,且BM=AN式判断△OMN的形状,并加以证明请详细证明有分答案是等腰Rt三角形谢谢了3...
若点M,N分别在线段AB,AC上的点,且BM=AN式判断△OMN的形状,并加以证明
请详细证明 有分 答案是等腰Rt三角形 谢谢了
3 展开
请详细证明 有分 答案是等腰Rt三角形 谢谢了
3 展开
展开全部
很简单
因为ABC为等腰直角三角形 O为BC中点 所以AO垂直平分BC
故 AO=OC ∠OAM=∠OCN
又AN=BM
故 CN=AM
由两边一角定理得 三角形 OCN 全等 OAM
故ON=OM 角CON=AOM
又CON+NOA=90
故AOM+NOA=90
故角MON=90
等腰直角
因为ABC为等腰直角三角形 O为BC中点 所以AO垂直平分BC
故 AO=OC ∠OAM=∠OCN
又AN=BM
故 CN=AM
由两边一角定理得 三角形 OCN 全等 OAM
故ON=OM 角CON=AOM
又CON+NOA=90
故AOM+NOA=90
故角MON=90
等腰直角
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询