2个回答
展开全部
cos(a+π/4)
=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
=cos(a+b)cos(b-π/4)-36/65;
3π/4<a<π
3π/4<b<π
3π/2<a+b<2π
所以:cos(a+b)=4/5;
3π/4<b<π;
π/2<b-π/4<3π/4.
所以:cos(b-π/4)=-5/13.
所以:
cos(a+π/4)=-20/65-36/65=-56/65.
=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
=cos(a+b)cos(b-π/4)-36/65;
3π/4<a<π
3π/4<b<π
3π/2<a+b<2π
所以:cos(a+b)=4/5;
3π/4<b<π;
π/2<b-π/4<3π/4.
所以:cos(b-π/4)=-5/13.
所以:
cos(a+π/4)=-20/65-36/65=-56/65.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询