新版的,注意是新版的八年级数学课程导报人教版第六期答案!越快越好啊!!谢谢啦!(达标检测那一版) 5
2个回答
展开全部
一、精挑细选,一锤定音
1.D.2.B.3.A.4.C.5.C.6.C.
7.B.提示:∠PBC+∠PCB=∠PCA+∠PCB=∠ACB=65°.
8.B.提示:△ABC是等边三角形.
9.C.提示:其中第②③个是正确的.
10.C.提示:三角形的高所在直线的交点在三角形内或三角形的一边上或三角形外.
二、慎思妙解,画龙点睛
11.90°.12.13.13.30.14.6.
15.(1,-1) .16.10°.17.30°,60°,90°.18.8.
三、过关斩将,胜利在望
19.答案不唯一,从图1中任选两个即可.
20.(1)如图2;(2) .
21.解:∵∠A=∠B,∴AC=BC=5.
∴EC=AC-AE=5-3=2.
∵DE‖BC,∴∠ADE=∠B.
∴∠A=∠ADE.∴DE=AE=3.
∵DE‖BC,∴∠EFC=∠FCB.
∵∠FCB=∠FCE.∴∠EFC=∠FCE.∴FE=EC=2.
∴DF=DE-FE=3-2=1.
22.证明:如图3,连接AM,AN,
∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.
∵ME垂直平分AB,∴BM=MA.
于是∠MAB=30°,∠BMA=120°,∠AMN=60°.
同理,NC=AN,∠ANM=60°.
∴△AMN是等边三角形.
∴MA=MN=AN.∴BM=MN=NC.
23.已知:①③(或①④,或②③,或②④).
证明:在△ABE和△DCE中,
∵∠B=∠C,∠AEB=∠DEC,AB=DC.
∴△ABE≌△DCE(AAS).
∴AE=DE,即△AED是等腰三角形.
24.(1)∵△ABC为等边三角形,∴∠BAE=∠C=60°.
在△BAE和△ACD中,
∴△BAE≌△ACD.
∴AD=BE.
(2)由(1)得∠ABE=∠DAC.
∴∠BPD=∠ABE+∠BAP=∠DAC+∠BAP=∠BAC=60°.
∴∠PBQ=30°.
在Rt△BPQ中,BP=2PQ=6.
∴BE=BP+PE=6+1=7.
∴AD=BE=7.
四、附加题
25.点Q到ON的距离QB不变,这个距离是3cm.
解:过点A作AC垂直于OM于点C,
∵∠PAQ=30°,∴∠QAB+∠OAP=150°.
∵∠O=30°.
∴∠OAP+∠APC=150°.∴∠QAB=∠APC.
又∵∠QBA=∠ACP,AP=AQ,
∴△QAB≌△APC.∴BQ=AC.
∵∠O=30°,∠ACO=90°,OA=6,∴AC=3.
∴QB=3cm.
26.(1)AD=BE;
(2)AM+CM=BM.
证明:在BM上截取BN=AM,连接CN.
易证△BCN≌△ACM,得到CN=CM,∠BCN=∠ACM.
∴∠NCM=∠NCA+∠ACM=∠NCA+∠BCN=∠BCA=60°.
∴△CMN为等边三角形.
∴MN=CM.
∴AM+CM=BM.
(3)AM+CM=BM.
1.D.2.B.3.A.4.C.5.C.6.C.
7.B.提示:∠PBC+∠PCB=∠PCA+∠PCB=∠ACB=65°.
8.B.提示:△ABC是等边三角形.
9.C.提示:其中第②③个是正确的.
10.C.提示:三角形的高所在直线的交点在三角形内或三角形的一边上或三角形外.
二、慎思妙解,画龙点睛
11.90°.12.13.13.30.14.6.
15.(1,-1) .16.10°.17.30°,60°,90°.18.8.
三、过关斩将,胜利在望
19.答案不唯一,从图1中任选两个即可.
20.(1)如图2;(2) .
21.解:∵∠A=∠B,∴AC=BC=5.
∴EC=AC-AE=5-3=2.
∵DE‖BC,∴∠ADE=∠B.
∴∠A=∠ADE.∴DE=AE=3.
∵DE‖BC,∴∠EFC=∠FCB.
∵∠FCB=∠FCE.∴∠EFC=∠FCE.∴FE=EC=2.
∴DF=DE-FE=3-2=1.
22.证明:如图3,连接AM,AN,
∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.
∵ME垂直平分AB,∴BM=MA.
于是∠MAB=30°,∠BMA=120°,∠AMN=60°.
同理,NC=AN,∠ANM=60°.
∴△AMN是等边三角形.
∴MA=MN=AN.∴BM=MN=NC.
23.已知:①③(或①④,或②③,或②④).
证明:在△ABE和△DCE中,
∵∠B=∠C,∠AEB=∠DEC,AB=DC.
∴△ABE≌△DCE(AAS).
∴AE=DE,即△AED是等腰三角形.
24.(1)∵△ABC为等边三角形,∴∠BAE=∠C=60°.
在△BAE和△ACD中,
∴△BAE≌△ACD.
∴AD=BE.
(2)由(1)得∠ABE=∠DAC.
∴∠BPD=∠ABE+∠BAP=∠DAC+∠BAP=∠BAC=60°.
∴∠PBQ=30°.
在Rt△BPQ中,BP=2PQ=6.
∴BE=BP+PE=6+1=7.
∴AD=BE=7.
四、附加题
25.点Q到ON的距离QB不变,这个距离是3cm.
解:过点A作AC垂直于OM于点C,
∵∠PAQ=30°,∴∠QAB+∠OAP=150°.
∵∠O=30°.
∴∠OAP+∠APC=150°.∴∠QAB=∠APC.
又∵∠QBA=∠ACP,AP=AQ,
∴△QAB≌△APC.∴BQ=AC.
∵∠O=30°,∠ACO=90°,OA=6,∴AC=3.
∴QB=3cm.
26.(1)AD=BE;
(2)AM+CM=BM.
证明:在BM上截取BN=AM,连接CN.
易证△BCN≌△ACM,得到CN=CM,∠BCN=∠ACM.
∴∠NCM=∠NCA+∠ACM=∠NCA+∠BCN=∠BCA=60°.
∴△CMN为等边三角形.
∴MN=CM.
∴AM+CM=BM.
(3)AM+CM=BM.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询