
证明函数f(x)=x+1/x在(0,+∞)的单调性
1个回答
展开全部
设任意x1,x2∈(0,+∞),且x1<x2
则f(x1)-f(x2)=x1+1/x1-x2-1/x2
=(x1-x2)+(x2-x1)/x1x2
=(x1-x2)+[(x2-x1)]/x1x2
=(x1-x2)[1-1/x1x2]
=(x1-x2)[(x1x2-1)/(x1x2)]
x1-x2<0,x1x2>0,
若x1 x2∈(0,1],则x1x2<1 所以f(x1)>f(x2)
所以,f(x)在(0,1]上是减函数
若x1x2∈(1,+∞),则x1x2>1 所以f(x1)<f(x2)
所以,f(x)在[1,+∞)上是增函数
则f(x1)-f(x2)=x1+1/x1-x2-1/x2
=(x1-x2)+(x2-x1)/x1x2
=(x1-x2)+[(x2-x1)]/x1x2
=(x1-x2)[1-1/x1x2]
=(x1-x2)[(x1x2-1)/(x1x2)]
x1-x2<0,x1x2>0,
若x1 x2∈(0,1],则x1x2<1 所以f(x1)>f(x2)
所以,f(x)在(0,1]上是减函数
若x1x2∈(1,+∞),则x1x2>1 所以f(x1)<f(x2)
所以,f(x)在[1,+∞)上是增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询