2个回答
展开全部
令x²/(x+2)³=A/(x+2)+B/(x+2)²+C/(x+2)³
解得A=1,B=-4,C=4
原式=∫dx/(x+2) - 4∫dx/(x+2)² + 4∫dx/(x+2)³
=ln|x+2| + 4/(x+2) - 2/(x+2)² + C
=(4x+6)/(x+2)² + ln|x+2| + C
解得A=1,B=-4,C=4
原式=∫dx/(x+2) - 4∫dx/(x+2)² + 4∫dx/(x+2)³
=ln|x+2| + 4/(x+2) - 2/(x+2)² + C
=(4x+6)/(x+2)² + ln|x+2| + C
追问
首先先谢谢你了,不过 用第一类换元法(凑微分法)应该如何去解题
追答
∫x²/(x+2)³ dx
=∫x² d[-1/2(x+2)²]
=(-1/2)∫x² d[1/(x+2)²]
=(-1/2)*x²/(x+2)² + (1/2)∫1/(x+2)² d(x²),这里运用分部积分法
=(-1/2)*x²/(x+2)² + ∫x/(x+2)² dx
=(-1/2)*x²/(x+2)² + ∫(x+2-2)/(x+2)² dx
=(-1/2)*x²/(x+2)² + ∫[1/(x+2)-2/(x+2)²] dx
=(-1/2)*x²/(x+2)² + ∫d(x+2)/(x+2) - 2∫d(x+2)/(x+2)²
=(-1/2)*x²/(x+2)² + ln|x+2| - [-2/(x+2)] + C
=-x²/[2(x+2)²] + ln|x+2| + 2/(x+2) + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2016-01-04
展开全部
问题不详,无法解答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询